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ABSTRACT
In the recent PhD thesis of Bouw, an algorithm is examined that

computes the group structure of the principal units of a p-adic

number �eld completion. In the same thesis, this algorithm is used

to compute Hilbert norm residue symbols. In the present paper, we

will demonstrate two other applications.

�e �rst application is the computation of an important invari-

ant of number �eld completions, called ibeta. �e algorithm that

computes ibeta is deterministic and runs in polynomial time.

�e second application uses Hilbert norm residue symbols and

yields a probabilistic algorithm that computes the m-th power

residue symbol

(
α
b

)
m

in arbitrary number �elds K . �is proba-

bilistic algorithm relies on LLL-reduction and sampling of near-

primes. Using heuristics, we analyse its complexity to be polyno-

mial expected time in n = [K : Q], log |∆K | and the input bit size

– a tentative conclusion corroborated by timing experiments. An

implementation of the algorithm in Magma will be available at

h�ps://github.com/kodebro/powerresiduesymbol.

1 INTRODUCTION
“�eorema fundamentale, quod sane inter elegan-
tissima in hoc genere est referendum, in eadem
forma simplici, in qua supra propositum est, a
nemine hucusque fuit prolatum.”

- C.F. Gauss, Disquisitiones Arithmeticae
�e above quote is about the beautiful and famous quadratic reci-

procity law. From this law, one can derive a classical algorithm

that computes the quadratic residue symbol in Z, also known as

the Jacobi symbol.

�e quadratic reciprocity law generalizes to higher powers, which

is called the power residue reciprocity law [17, §VI.8]. Contrary to

the quadratic case, no straightforward algorithm to compute higher

power residue symbols follows from this law, mainly due to the fact

that there occur Hilbert symbols in the reciprocity factor, for which
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there was – until very recently – no e�cient algorithm known.

Also, the lack of a Euclidean algorithm in most number �elds fairly

complicates the computation of the power residue symbol.

In Bouw’s PhD thesis [5] an algorithm is proposed that com-

putes Hilbert symbols e�ectively, which allows to compute higher

power residue reciprocity – a signi�cant improvement of ideas in

Daberkow’s article about Kummer extensions [8]. Using this ef-

fective reciprocity law, Squirrel gives an algorithm to compute the

power residue symbol

(
α
b

)
m

for �xedm [23], relying on very heavy

precomputations. �e e�ective part of his algorithm – reducing the

power residue symbol from arbitrary number �elds to cyclotomic

�elds – is an idea proposed by Lenstra [15].

�e master’s thesis of one of the authors [2] introduces a prob-

abilistic algorithm to compute the power residue symbol, that –

under some heuristic assumptions – runs in expected time polyno-

mial in the degree n = [K : Q], the logarithm of the absolute value

of the �eld discriminant ∆K and the size of the input. �e algorithm

is implemented in Magma [4] and seems to be practically feasible.

�is paper is partially a summary of the mentioned master’s thesis.

Additionally, the algorithm in Bouw’s thesis was the starting

point of the research conducted by one of the authors on ibeta

[20], a combinatorial invariant of local �elds. �is invariant turns

out to parametrize the possible unit �ltrations of local �elds and

connects the structure of the unit �ltration with rami�cation theory

and the possible jump sets of a character. �ese results, which we

will brie�y treat in this paper, indicate two main reasons why an

implementation of an algorithm computing ibeta was desirable.

�e results led to further questions for which computer experi-

mentation was eligible and, furthermore, the relations of ibeta with

other invariants indicate that an implemented algorithm could be of

practical use [20]. We describe in detail the algorithm and the key

role of this algorithm in the theoretical questions that this subject

has to o�er.

�e authors would like to thank J. Bouw for supplying an early

version of his PhD thesis, prof. H.W. Lenstra for giving highly useful

advise and dr. W. Bosma for his supervision.

2 PRELIMINARIES
Notation 2.1. In this paper, we write K for a number �eld, OK
for its ring of integers, a for an ideal in OK , p for a prime ideal in

OK and n for the degree [K : Q]. We will denote Fp for the unique

�nite �eld with p elements.
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We assume that, during calculations, the ring of integers OK
is given by an integral basis: OK = Zγ1 + . . . + Zγn . �at means

that every element α ∈ OK can be uniquely represented by the

coe�cients of this basis:

α =
n∑
i=1

ciγi with ci ∈ Z. (1)

Despite of the fact that the power residue symbol algorithm also

works in non-maximal orders R ⊆ OK [2], it is assumed – for

simplicity – that the ring of integers is known.

Notation 2.2. We denote byQp the p-adic rationals, byvp : Qp →
Z the p-valuation, by F a �nite-degree extension of Qp (ζp ) and by

O the ring of integers of F with maximal ideal m. We denote the

rami�cation index of F by e = e (F/Qp ) and the residue �eld degree

by f = f (F/Qp ). We denote by v : F → Z the valuation on F and

by F = O/m the (�nite) residue �eld of F . We choose an uniformizer

π ∈ O, i.e. an element such that (π ) = m. Also, we choose γ ∈ F

such that every element in F can be uniquely wri�en as

∑f −1

i=0
ciγ

i

mod m, with ci ∈ {0, . . . ,p − 1}. We use the map ·̄ : F → F for

reducing modulo m.

We will use the notation Ui (F ) = 1 +mi ⊆ O∗ for the principal

units of height i; these are elements of the form 1 + c · π i , for an

i ∈ N>0 and c ∈ O. Principal units U1 (F ) of height 1 are just called

principal units. Denote by ω : F∗ → F ∗ the Teichmüller map; for a

de�nition see [9, Ex. I.13, p. 20].

3 PRINCIPAL UNITS OF A COMPLETION
De�nition 3.1. An element δ ∈ Upe/(p−1) (F ) is called a weakly

distinguished unit if it is not a p-th power in F .

According to [5, Prop. 7.21], one can compute a weakly distin-

guished unit e�ciently in a given �nite degree �eld extension F of

Qp (ζp ). Since weakly distinguished units δ ∈ F are not unique, it

is assumed that – given an extension F – a �xed δ ∈ Upe/(p−1) (F )
is chosen beforehand.

Notation 3.2. (i) We denote by J the index set {j | 1 ≤ j <
pe/(p − 1) and p - j}.

(ii) Let Tj be the set {1 − ω (γ )iπ j | 0 ≤ i < f } ⊆ Uj , for j ∈ J .
(iii) Let Tpe/(p−1) = {δ }.
(iv) Let T :=

⋃
j ∈J∪{pe/(p−1) }Tj .

�e following theorem is a short version of [5, §8.4, �. 8.15].

Theorem 3.3. Let F be a �nite extension of Qp (ζp ). �en the
group homomorphism

ϕ : ZTp → U1 (F ), (at )t ∈T 7→
∏
t ∈T

tat (2)

is a surjection, with kernel equal to (b) := (bt )t ∈T Zp for some b =
(bt )t ∈T ∈ Z

T
p .

Remark 3.4. From the proof of this theorem (see [5, �. 8.15] or

[11, �. 2.2]) one obtains that the isomorphism U1

∼
−→ ZTp /(b) is

e�ective. �is means in particular that one can (within polynomial

time with respect to the precision N , degreen and primep) compute

a p-adic approximation of b = (bt )t ∈T ∈ Z
T
p that satis�es∏

t ∈T
tbt ≡ 1 mod m

N
(3)

Remark 3.5. When one takes N >
pe
p−1
+ ke in Equation 3, the

p-adic approximation of bt ∈ Zp has at least precision k for every

t ∈ T (see [5, §7.3] or [11, §2]). For the computation of ibeta it

is enough to have precision r + 1 for all bt , with r the maximum

number such that pr | e , the rami�cation index of F : Qp . �is is

a consequence of �eorem 4.4 and (I ,β ) being a extended jump

set (as in De�nition 4.2). So, in order to compute ibeta, one has

to approximate (bt )t ∈T such that Equation 3 holds with precision

N >
pe
p−1
+ (r + 1)e .

�e following corollary is obtained from [5, Prop. 10.1].

Corollary 3.6. For α ,β ∈ F , one can compute the Hilbert norm

residue symbol
(
α ,β
m

)
m

in time polynomially bounded by n = [F :

Qp ] andm ∈ N.

4 COMPUTING IBETA
4.1 ibeta
In �eorem 3.3, a homomorphism ZTp → U1 (F ) is described, with

kernel generated by an element b = (bt )t ∈T . Since this element

depends heavily on the choices of π ∈ m,γ ∈ F and δ ∈ Upe/(p−1) ,

it is clearly not uniquely determined. In the current section, we

examine how various invariants of the �eld extension F : Qp (ζp )

are related with b ∈ ZTp .

As a Zp -module, the isomorphism type of U1 (F ) is completely

determined by the degree n = [F : Qp ] and the number k =
vp (#µ (F )), where µ (F ) are the roots of unity of F (see �eorem 3.3).

�is number k denotes the largest k ∈ N>0 such that the pk -th root

of unity ζpk is contained in F . From �eorem 3.3 one can deduce

that k = mint ∈T vp (bt ).
By imposing more structure on U1 (F ), and seeing it as a �ltered

Zp -module with respect to the natural �ltration U1 (F ) ⊃ U2 (F ) ⊃
... ⊃ Ui (F ) ⊃ ..., a much stronger relation emerges with the ele-

ment b from �eorem 3.3. One will see shortly that the isomorphism

type ofU1 (F ) as a �ltered Zp -module can be characterized by some

‘reduced version’ of b, called ibeta.

�e relation with the �ltered module U1 (F ) and the element

b ∈ ZTp arises when one sees both ZTp and U1 (F ) as objects in the

category of �ltered Zp -modules ModFilt (Zp ). It is proved in [20]

that there exists a ‘natural �ltration’ on ZTp such that for any two

surjective morphisms η,θ : ZTp → U1 in the category ModFilt (Zp )

holds that there exists an ϵ ∈ AutFilt (Z
T
p ) such that η ◦ ϵ = θ . Here,

AutFilt (Z
T
p ) denotes the group of �ltered automorphisms of ZTp .

�erefore, the isomorphism type ofU1 (F ) is encoded in the orbit

of b ∈ ZTp under the �ltered automorphism group of ZTp with the

mentioned natural �ltration. It turns out that the sets of orbits of

AutFilt (Z
T
p ) acting on ZTp can be parametrized by extended-ρ (e,p )-

jump-sets.

Notation 4.1. Given e,p as in Notation 2.2. We denote by ρ (e,p ) :

Z → Z the map ρ (e,p ) (i ) := min(pi,i + e ) and by J+ = J ∪ {
pe
p−1
}

with J as in Notation 3.2.

De�nition 4.2. An extended ρ-jump-set is a pair (I ,β ) where

I ⊂ J+ and β : I → Z≥1 such that β is strictly decreasing and the
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map

i 7→ ρ
β (i )
(e,p ) (i ) = ρ (e,p ) ◦ · · · ◦ ρ (e,p )︸                  ︷︷                  ︸

β (i ) times

(i )

is strictly increasing.

�e jump set (I ,β ) corresponding to b ∈ ZTp can be computed

by applying Algorithm 2; here, b must be given with a su�cient

precision as in Remark 3.5.

De�nition 4.3. Let F be a �nite extension ofQp (ζp ). We denote by

(IF ,βF ) = ibeta(F ) the jump set obtained by applying Algorithm 2

to b ∈ ZTp from �eorem 3.3.

In [20] it is proved that the jump set (IF ,βF ) given by the output

of Algorithm 2 is independent of the representation of the �eld F ,

making De�nition 4.3 well-posed. Furthermore, this proof shows

that (IF ,βF ) determines the orbit of b ∈ ZTp under the �ltered

automorphism group of ZTp and therefore characterizes the isomor-

phism class of U1 (F ) as a �ltered module. In other words, there

is a one-to-one correspondence between isomorphism classes of

�ltered modules of the form U1 (F ) (with F a �nite extension of

Qp (ζp ) having rami�cation index e) and realizable ρ (e,p )-jump sets,

as de�ned in De�nition 4.5.

4.2 Properties of ibeta
In this section, three theorems about ibeta will be discussed. �e

proofs of these theorems can be found in [20].

Theorem 4.4. Let p be a prime number, let e ∈ Z>0, and let (I ,β )
be an extended ρ (e,p )-jump set as in De�nition 4.2. �en the following
are equivalent:

• �ere exists a �nite extension F : Qp (ζp ) with rami�cation
index e , such that (I ,β ) = (IF ,βF ) = ibeta(F );

• p − 1 | e , I , ∅ and ρβ (min(I ))
(e,p ) (min(I )) =

pe
p−1

.

De�nition 4.5. Let p be a prime number, let e ∈ Z>0. We call the

ρ (e,p )-jump set (I ,β ) realizable when the statements in �eorem 4.4

are true. Furthermore, denote

Re = {(I ,β ) | (I ,β ) is a realizable ρ (e,p )-jump set}

Note that �eorem 4.4 states that the set Re is e�ectively recog-

nizable.

Notation 4.6. Let e, f ∈ N>0, and let F = Qp f (ζp ), where Qp f

is the unique unrami�ed extension of Qp of degree f . As usual,

m = (1−ζp ) is the unique maximal ideal associated to F . We denote

Ee,f = {д(x ) ∈ F [x] | д(x ) is m-Eisenstein, deg(д) = e}.

Also, given an m-Eisenstein polynomial д(x ) ∈ F [x], we denote Fд
for F [x]/(д), the extension of F by adjoining a root of д(x ).

Theorem 4.7. Let e, f and F as in Notation 4.6. Denote

E(I ,β ) = {д ∈ Ee,f | ibeta(Fд ) = (I ,β )}.

�en there exists an e�ectively computable probability function G :

Re → [0,1] from the set of realizable ρ (e,p )-jump sets to the unit
interval such that

µH
(
E(I ,β )

)
= G ((I ,β )), (4)

where µH is the Haar measure on Ee,f .

�e measure on le� hand side of Equation 4 is the Haar measure

on the coe�cients of the polynomials, which – by the Serre mass

formula [22] – gives a natural counting measure on totally rami�ed

relative extensions of �xed degree. So, informally, the value of

the function G (I ,β ) could be interpreted as the probability that

a randomly chosen д ∈ Ee,f (with respect to the Haar measure)

satis�es ibeta(Fд ) = (I ,β ). �e function G (I ,β ) also has a natural

combinatorial interpretation, which is interesting in itself [20].

Examining the proof of �eorem 4.7 carefully, one also obtains a

non-probabilistic result: for certain special Eisenstein polynomials

д(x ) ∈ F [x], ibeta(Fд ) can be determined by applying calcula-

tions on the coe�cients of д(x ) as in Algorithm 1. �ose special

Eisenstein polynomials are called unsaturated.

De�nition 4.8 (Unsaturated Eisenstein polynomials). Given F =
Qp f (ζp ) with unique maximal ideal m = (1 − ζp ) of O ⊆ F . An

m-Eisenstein polynomial д(x ) = xd +
∑d−1

i=0
дix

i ∈ F [x] is called

unsaturated i� there exists an i ∈ {1, . . . ,d − 1}, coprime to p, such

that vm (дi ) < p − 1.

Algorithm 1: Computes ibeta from an unsaturated Eisenstein

polynomial

1 ibeta special(д);
Input : An unsaturated m-Eisenstein polynomial д (x ) of degree d .

Output : Sequences I = (i1, . . . , ik ) and β = (β1, . . . , βk ) in Zk

related to the rami�ed extension F [x ]/д (x ).
2 Construct the set S = {(i,vm (дi )) | дi , 0} ;

3 Set the following lexicographic strict order C on the set S :

(i,m) C (i′,m′) ⇔ (m < m′ or (m =m′ and i < i′))
4 Set k := 1 ;

5 while S , ∅ do
6 sk = (ik ,mk ) = minC S ; // minimum w.r.t. order C

7 Set S := {(i,m) ∈ S | vp (i ) < vp (ik ) } ; // smaller p-valuation

8 k := k + 1 ;

9 end

10 I :=

{
dm`+i`
pvp (`) | ` ∈ {1, . . . , k }

}
sorted increasing ;

11 β := {vp (`) + 1 | ` ∈ {1, . . . , k } } sorted decreasing ;

Theorem 4.9. Let д(x ) ∈ F [x] be an unsaturated m-Eisenstein
polynomial as in De�nition 4.8. �en Algorithm 1 computes the
ρ (e,p )-jump set (IFд ,βFд ) = ibeta(Fд ) correctly.

When д ∈ F [x] is an unsaturated Eisenstein polynomial, one

is able to compute from (IFд ,βFд ) the so-called jumps of the ram-

i�cation �ltration of Fд : F , an important invariant of the �eld

Fд , closely related to the Newton polygon of д(ωx + ω) for ω a

root of д [20]. �is directly implies that this particular invariant

is completely determined by the structure of the �ltered module

U1 (Fд ), for unsaturated Eisenstein extensions Fд .

4.3 Research on and applications of ibeta
4.3.1 Find a similar rule for saturated Eisenstein polynomials. For

saturated Eisenstein polynomials, the proof of �eorem 4.7 is purely

probabilistic, and nothing equivalent to �eorem 4.9 is known. �is

means that – for saturated Eisenstein polynomials – the only known
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way to compute ibeta(Fд ) is via Algorithm 2. One might apply

this algorithm to many saturated Eisenstein polynomials д ∈ F [x]

in order to �nd a structure in the computed ibeta(Fд ) for such

д ∈ F [x] or to discover a relation with important invariants from

rami�cation theory.

4.3.2 Relate (IF ,βF ) to the Galois group Gal(F/Qp (ζp )). Not

only the relation with rami�cation theory is interesting; also �nding

a link between (IF ,βF ) and the Galois group GF = Gal(F/Qp (ζp ))
is a �eld of current research. �e most interesting and challenging

case is whenp | #GF and the extension F : Qp (ζp ) is totally rami�ed.

Algorithm 2 can be used to �nd such a link in these di�cult cases.

�e authors of this paper did already run Algorithm 2 in this

context for some cases where GF is isomorphic to the cyclic group

of order pk . �ese extension were of the form F ( pk√π ) : F =
Qp (ζp ), with π a uniformizing element of F . Note that an Eisenstein

polynomial de�ning this extension is always saturated.

4.3.3 Classifying jump sets of cyclic characters of Gal(F/Qp (ζp )).
In the theory of Galois representations, one might be interested

in the jump sets of cyclic characters of Gal(F̄/F ), where F̄ is the

algebraic closure of the local �eld F . In [20] is proved that a list of all

possible jump sets associated to such characters can be calculated

explicitly from (IF ,βF ).

4.3.4 Relate (IF ′ ,βF ′ ) to (IF ,βF ) for an extension F ′ : F : Qp (ζp ).
�ere are already several theorems in this direction (see [20]), which

are mostly results like in �eorem 4.10. �e goal is to �nd a theo-

rem that relates the change of (IF ,βF ) to (IF ′ ,βF ′ ) to an Eisenstein

polynomial de�ning the rami�ed extension F ′ : F . With the imple-

mented version of Algorithm 2 the authors are presently able to

perform experiments in the direction of this goal. From these exper-

iments, one might expect to �nd structures that imply a ‘relative’

version of Algorithm 1.

Theorem 4.10. Suppose F ′ : F : Qp (ζp ) are �nite extensions such
that F ′ : F is totally rami�ed and of degree p. Let i < j be consecutive
indices in IF such that βF (i ) − βF (j ) ≥ 2.

�en i, j ∈ IF ′ , βF ′ (i ) = βF (i ) + 1 and βF ′ (j ) = βF (j ) + 1.

5 COMPUTING THE POWER RESIDUE
SYMBOL

5.1 Preliminaries
Notation 5.1. In this section, K is a number �eld containing a

primitivem-th root of unity ζm ∈ K , and p is a prime ideal of OK ,

coprime to m. Also, we denote µm = 〈ζm〉, for the group of m-th

roots of unity in K .

�e following de�nitions of the power residue symbol can be

found in [12, p. 111].

De�nition 5.2 (Power residue symbols above prime ideals). Let

α ∈ OK \p. �en we de�ne

(
α
p

)
m
∈ µm to be the unique m-th root

of unity that satis�es(
α

p

)
m
≡ α

N (p)−1

m mod p. (5)

General power residue symbols – i.e., above any ideal – are just

multiplicative continuations of De�nition 5.2. Since the ring of

Algorithm 2: Computes ibeta from b ∈ ZTp
1 ibeta(b);
Input : An element b = (bt )t∈T ∈ ZTp with for every bt precision at

least pr+1
, with r = vp (e ).

Output : I = (i1, . . . , ik ) and β = (β1, . . . , βk ) in Zk .

// Initialization

2 Set I := {i | 1 ≤ i < pe/(p − 1) and p - i } ∪ { pep−1
} ;

3 Set Ti := {1 − ω (γ ) jπ i | 0 ≤ j < f } ⊆ Ui , for i ∈ I \{ pep−1
} ;

4 Set T pe
p−1

= {δ } ;

5 for i ∈ I do
6 Compute m = min{vp (bt ) | t ∈ Ti } ;

7 if m > r + 1 then
8 Remove i from I ;

9 else
10 Set βi =m ;

11 end
12 end

// ‘Upwards reduction’

13 for i ∈ I do
14 I := I \{i′ ∈ I | i < i′ and βi ≤ βi′ } ;

15 end
// ‘Downwards reduction’

16 for i′ ∈ I do
17 I := I \{i ∈ I | i < i′ and i · pβi ≥ i′ · pβi′ } ;

18 end
19 Return I , (βi | i ∈ I ) ;

integers of a number �eld is a Dedekind ring, every (fractional)

ideal can be decomposed uniquely into a product of prime ideals:

b =
∏
p |b

p
vp (b) .

De�nition 5.3 (Power residue symbol). LetK be as in Notation 5.1,

let b an ideal of OK coprime to m and let α ∈ OK be an element

coprime to b. We de�ne(α
b

)
m

:=
∏
p |b

(
α

p

)vp (b)
m

.

Lemma 5.4. �e power residue symbol has the following properties,
for all α ,β ,γ ∈ K , for all ideals b,c of OK and for all prime ideals p of
OK , provided that the numerator and de denominator in the symbol
are coprime, and the denominator is coprime tom.(

α

β

)
m

(
β

α

)−1

m
=

∏
p |m∞

(
α ,β

p

)
m

(reciprocity law)1 (6)

(α
b

)
m
=

(
α + β

b

)
m

for every β ∈ b. (7)

(
αβ

b

)
m
=

(α
b

)
m
·

(
β

b

)
m

and
( α
bc

)
m
=

(α
b

)
m
·

(α
c

)
m

(8)

1
�e in�nity sign in this equation is about so-called in�nite primes. Only the Hilbert

symbols above the ‘real’ in�nite primes σ : K → R are non-trivial and can easily be

computed by observing the signs of σ (α ) and σ (β ) [17, § III.5].
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(
αγm

b

)
m
=

(α
b

)
m

(9)

Proof. A proof of these properties can be found in [17, §VI.8.3]

and [10, Ch. 2]. �

Notation 5.5. In this paper, the right hand side of Equation 6 will

be denoted by U (α ,β ), the Umkehrfaktor (German for inversion

factor):

U (α ,β ) =
∏
p |m∞

(
α ,β

p

)
m
.

Here, the symbol

(
α ,β
p

)
m

denotes the m-th Hilbert norm residue

symbol at the prime p.

Remark 5.6. An immediate corollary of the results of [5] is that

the Umkehrfaktor can be computed in polynomial time (see Corol-

lary 3.6), implying that the reciprocity law (see Equation 6) can be

used extensively in an algorithm that computes the principal power

residue symbol.

So, from now on, we assume that one can compute

(
β
α

)
m

from(
α
β

)
m

in polynomial time, with the following calculation.(
β

α

)
m
= U (α ,β )−1

(
α

β

)
m
.

5.2 Computation of the power residue symbol
�e straightforward way to compute

(
α
b

)
m

is by factoring b into

prime ideals and using formula (5) to evaluate the symbol

(
α
p

)
m

above each prime ideal dividing b. Since factoring ideals is as hard

as factoring integers, for which the fastest known algorithm is still

only subexponential [21], [13], this is not the right approach.

Instead, we can use the techniques of [2], in which the power

residue symbol

(
α
b

)
m

is computed using three stages:

• Principalization, which is essentially reducing the compu-

tation of

(
α
b

)
m

to

(
α
β

)
m

for some β ∈ b.

• Reduction, an optional stage, which reduces the computa-

tion of

(
α
β

)
m

for large α ,β ∈ K to many ‘smaller’

(
αi
βi

)
m

with αi ,βi ∈ K .

• Evaluation, where

(
α ′
β ′

)
m

is computed directly, using a

trick that relies on prime density results.

5.2.1 Principalization and evaluation. Since the stages principal-

ization and evaluation are very alike, we will treat both of them in

one subsection. �eoretically, these two stages are the most impor-

tant, whereas practically, the reduction stage reduces the running

time drastically.

In these two stages, the notion of B-near prime ideals is used. A

near prime ideal has a norm that is the product of one single large

prime and several other very small primes. More formally:

De�nition 5.7 (B-near prime number). An integer N ∈ N is said

to be a B-near prime number if N factorizes as follows:

N = p ·
k∏
i=1

pi with pi ≤ B for all 1 ≤ i ≤ k ,

where {pi } may contain repeating primes.

De�nition 5.8 (B-near prime ideal). An ideal a of R is called a

B-near prime ideal when the norm N (a) is a B-near prime number

as in De�nition 5.7.

Remark 5.9. �e computational advantage of B-near prime ideals

is that they are both e�ectively recognizable and factorizable when

B is polynomially bounded by the degree n = [K : Q], as explained

below.

For B polynomially bounded in the degree n = [K : Q], checking

whether an ideal a is B-near prime can be done by a polynomial

time algorithm. Compute the norm N = N (a), and apply trial

division up to B to the number N , i.e. N = r ·
∏k

i=1
pi with pi ≤ B.

�en, use a fast primality proving algorithm to check whether r is

prime or not. �e ideal a is a B-near prime if and only if r is prime.

Since primality proving can be done in polynomial time [1], above

procedure recognizes B-near prime ideals in polynomial time.

Also, if B is of polynomial size in the degree n = [K : Q], the

B-near prime ideals a are e�ectively factorizable, since one can �nd

the prime factorization of the norm. Write N (a) = p ·
∏k

i=1
pmi
i

with pi ≤ B and pi , pj , p for i , j. Here, all p,pi are prime.

(a) Set pp := (α ,p).

(b) Factor (α ,pmi
i ) =

∏ki
j=1
p
tj
pi ,j

;

(c) �en the prime ideal factorization of (α ) is:

(α ) = pp

k∏
i=1

ki∏
j=1

p
tj
pi ,j
. (10)

Principalization.
�e principalization algorithm (Algorithm 3), consists of sampling

‘random’, relatively small elements β ∈ b, and hoping that the ideal

c = (β )/b is aB-near prime ideal. SuchB-near prime ideals are easily

factorizable, and one calculates

(
α
b

)
m

by computing

(
α
β

)
m
·
(
α
c

)−1

m
,

where in the computation of

(
α
c

)
m

, the factorization of c is used.

See Algorithm 3 for a description of this algorithm.

Evaluation.
�e idea behind Algorithm 4 is to repeatedly multiply α0 by the m-

th power of random γ , until γmα0 mod β has a small representative

α̂ ∈ R that generates a B-near prime ideal (as in De�nition 5.8, with

a polynomially bounded B).

A�er �nding such an element α̂ generating a near-prime ideal,

one can use reciprocity, which reduces the computation of

(
α̂
β

)
m
=(

α
β

)
m

to the calculation of

(
β
α̂

)
m

. Since one can e�ectively (prob-

abilistically) factorize B-near prime ideals, one obtains (α̂ ) = pp ·∏k
i=1
pi and computes(

β

α̂

)
m
=

(
β

pp

)
m
·

k∏
i=1

(
β

pi

)
m
.
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Algorithm 3: Principalization: reducing the general power

residue symbol to the principal power residue symbol

1 PowerResidueSymbol(α , b);
Input : An element α in R and an ideal b in OK

Output : �e power residue symbol

(
α
b

)
m

2 Set n := [K : Q], where K is the quotient �eld of OK ;

3 Set B := 12 log
2 ( |∆K |) for the bound for near-primeness (see

Remark 5.10);

4 Compute an LLL-reduced basis (β1, . . . , βn ) of b ;

5 repeat
// Pick a random but small element from b

6 Pick a random vector (c1, . . . , cn ) ∈ Zn , with |ci | ≤ 3 for all i ;

7 Set β :=
∑n
i=1

ci βi ;
8 Calculate N := N (β )/N (b) ;

9 until N is a B-near prime number ;
// N is of the form p ·

∏r ′
i=1

pi for ‘small’ pi now

10 Calculate the ideal c := (β )/b, using (for example) [6, §4.8.4] ;

11 Factorize c := p ·
∏r
i=1
pi , using the factorization of N as in

Equation 10;

12 Compute

(
α
c

)
m

using above factorization ;

13 Compute

(
α
β

)
m

with reduction (subsubsection 5.2.2) and evaluation

(Algorithm 4) ;

14 Return

(
α
β

)
m

(
α
c

)−1

m
;

Remark 5.10. In line 11 of Algorithm 4 and line 3 of Algorithm 3,

the bound B = 12 log
2 ( |∆K |) is used, where ∆K is the discriminant

of K . �is particular choice – which may be increased to some

other �xed bound polynomial in n = [K : Q] and log( |∆K |) – is

based on practical experiments. One might heuristically assume

that B satis�es Assumption 5.18.

5.2.2 Reduction. �e reduction stage is optional and is only

useful when (A) the input variables α ,β are both large, or (B) one

of α ,β is much larger than the other.

In case (B), the solution is easy. Assume α is much larger than

β . �en compute an LLL-reduced basis Mβ of the ideal (β ), and

reduce α modulo Mβ as in [7, Algorithm 1.4.13, p. 33]. One hopes

that, a�er this procedure, α and β are about the same size.

In case (A), the inputs are both (very) large, say, with coe�cients

with bit size д(n) > 6n, where n = [K : Q] ≥ 2. Again, assume α to

be larger than β . Now, one can examine the la�ice L:

L = {(γ1,γ2) ∈ OK × OK | γ1α − γ2 ∈ (β )}.

One can deduce that this la�ice has discriminant N (β ), and di-

mension 2n. Applying LLL-reduction, one �nds a short vector

(γ1,γ2) ∈ O
2

K with:√
‖γ1‖

2 + ‖γ2‖
2 ≤ 2

nN (β )
1

2n ≈ 2
n ‖β ‖1/2

≈ 2

д (n )+2n
2 ≤ 2

2д (n )
3 ≈ ‖β ‖

2

3 ,

where heuristically is assumed that ‖β ‖ ≈ N (β )
1

n , and ‖β ‖ ≈ 2
д (n)

.

Using the results of Lemma 5.4, one can deduce that

(
α
β

)
m
=(

γ2

β

)
m

(
γ1

β

)−1

m
. So, the computation of the original power residue

symbol is reduced to the computation of two power residue symbols

Algorithm 4: Evaluation; computing the principal power

residue symbol

1 PrincipalPowResSym(α0, β );
Input : Elements α0, β ∈ OK .

Output : �e power residue symbol

(
α0

β

)
m

2 Set n as the degree of the number �eld of OK ;

3 repeat
4 repeat
5 Take a random γ̄ ∈ OK /β ;

6 Set α := α0 · γ̄m modulo β , with modular exponentiation ;

7 until α is invertible modulo β ;

8 Find ᾱ , a small representative of α modulo β , as as in [7,

Algorithm 1.4.13, p. 33] ;

9 Li� ᾱ coordinate-wise to OK , call it α̂ ;

10 Calculate its norm, N := N (α̂ ) ;

11 Factorize N =
(∏k

i=1
pi

)
· r using trial division with bound

B = 12 log
2 ( |∆K |) ;

// I.e. pi ≤ B for all i, and pi are primes

12 until r is prime and N is coprime withm;

// r is prime, and α̂ is invertible mod β
13 Set pr = (α , r ) ;

14 Factorize the ideal (α ) = pr ·
∏s
i=1
pi , using the factorization of N , as

in Equation 10 ;

15 Calculate the Umkehrsymbol U (α̂ , β ) ;

16 Return

∏s
i=1

(
β
pi

)
m
·

(
β
pr

)
m
·U (α̂ , β ) ;

with smaller input. By using reciprocity (Equation 6) and using the

fact that γi is smaller then β , one can reduce the symbols

(
γi
β

)
m

for i = 1,2 even further. �is results in a so-called reduction tree.

�e exact details and various improvements of above algorithm

can be found in [2, Ch. 4].

5.3 Analysis
We focus on the analysis of the principalization and the evaluation

stage.

5.3.1 Size of reduced elements. In both Algorithm 3 (line 6) and

Algorithm 4 (line 8) ‘small’ elements of the form

∑n
i=1

ciβi occur. In

this section a bound on such elements is derived, using properties

of LLL-reduced bases [14]. Consider the embedding

K
Ψ
−→ KR ⊆

∏
σ :K→C

C,x 7→ (σ (x ))σ

where σ : K → C ranges over the embeddings of K in C. Seeing

Ψ(OK ) and Ψ(a) as la�ices in KR (for ideals b of OK ), and using

the standard Hermitian inner product on

∏
σ :K→C C ⊇ KR (see

[24, p. 52]), one obtains

∆(Ψ(OK )) =
√
|∆K | and ∆(Ψ(b)) = N (a)

√
|∆K |.

Also, using the arithmetic/geometric mean inequality, we have

N (α )
1

n =
*.
,

∏
σ :K→C

σ (α )+/
-

1

n

≤
1

n

∑
σ :K→C

|σ (α ) |
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≤
1

√
n

√ ∑
σ :K→C

|σ (α ) |2 =
1

√
n
‖α ‖ (11)

Applying LLL-reduction in the la�ice Ψ(b) results [18, Ch. 2] in a

basis (β1, . . . ,βn ) of b satisfying the following bound:

n∏
i=1

‖βi ‖ ≤ 2

n (n−1)
2 |∆K |

1

2 N (b). (12)

Using Equation 11 and Equation 12, this yields

*
,

n∏
i=1

N (βi )+
-

1

n

≤ *
,

n∏
i=1

‖βi ‖
n

n
n
2

+
-

1/n

≤ n−n/2 · 2
n (n−1)

2 · |∆K |
1

2 · N (b).

Proposition 5.11. Let (β1, . . . ,βn ) be an LLL-reduced basis of b,
an ideal of OK . For elements of the form β =

∑n
i=1

ciβi with |ci | ≤ C
and ci ∈ Q, we have the following bound:

logN (β ) ≤ n

(
logC + logn + 2n(n − 1) +

log |∆K |

2

+ logN (b)

)
.

Proof. A proof can be found in the appendix of the full version

of this paper [3]. �

Remark 5.12. �e above bound is really pessimistic. In most cases,

we have

N (β ) ≤ 2

n (n−1)
2 · |∆K |

1

2 · N (b).

Remark 5.13. Note that the coe�cients ci might be rational, as is

the case in Algorithm 4. Also, with the Proposition 5.11, one is able

to generate many ‘relatively small’ elements in b, as is needed in

Algorithm 3.

5.3.2 Density of B-near primes. As we will see later on, the

expected running time of the principalization and evaluation algo-

rithm depends on the density of B-near primes in a �xed class of

the ideal class group. �e following result follows if one applies

[16, §7.2, Prop. 7.17, p. 347] to the set

A := {p prime ideal of OK | p is in the ideal class [g]},

where [g] ∈ Cl (K ) is an arbitrary ideal class. �e set A is a regu-

lar set of prime ideals (see for example [17, §13, �m. 13.2]) with

Dirichlet density
1

hK
, where hK = #Cl (K ) is the class number of K .

Theorem 5.14. If K is a number �eld, then∑
p∈[g]

N (p)≤x

1 ∼
x

hK logx
as x → ∞, (13)

where p ranges over all prime ideals of OK in the ideal class [g].

Notation 5.15 (Class number formula). Denote

ρK :=
2
r1+r2π r2RKhK

wK
√
|∆K |

,

where r1 is the number of real embeddings of K , r2 is the number

of pairs of complex embeddings of K , RK is the regulator of K (see

for example [17, p. 42-43]), wK is the number of roots of unity in K ,

∆K is the discriminant of OK and hK = #Cl (K ), the class number

of K . �e number ρK equals the residue at s = 1 of the Dedekind

zeta function ζK (s ) of the number �eld K .

�e following theorem counts the number of ideals in a particular

ideal class [g] that have norm bounded by x , and is obtained from

[19, §9.5, Prop. 9.17].

Theorem 5.16. For K a number �eld, and [g] an ideal class in
Cl (K ), we have ∑

N (a)≤x
a∈[g]

1 ∼
ρK
hK

x as x → ∞

Notation 5.17. For B ∈ N we de�ne the B-smooth ideals of OK
by

I (B) := {a ideal of OK | N (a) is a B-smooth number },

where a B-smooth number is a number whose prime factorization

only contains primes numbers ≤ B.

To prove the next lemma, we need the following heuristic as-

sumption.

Assumption 5.18. �ere exists a BK ∈ N bounded polynomially in
log |∆K | and n = degK such that, for all number �elds K , one has∑

N (a)≤BK

1

N (a)
≥ ρK .

Lemma 5.19. Suppose K is a number �eld, [g] ∈ Cl (K ) is an ideal
class and B = BK as in Assumption 5.18. �en

#{a ∈ [g] ideal of OK | a is a B-near prime, N (a) ≤ x } &
ρKx

hK logx
.

(14)

Proof. We have

#{a ∈ [g] ideal of OK | a is a B-near prime, N (a) ≤ x }

=
∑
a∈I (B )
N (a)≤x

∑
p∈[g][a]−1

N (p)≤x/N (a)

1 ∼
∑
a∈I (B )
N (a)≤x

x/N (a)

hK (logx − logN (a))

≥
x

hK logx

∑
a∈I (B )
N (a)≤x

1

N (a)
≥

ρKx

hK logx
. (15)

�

Corollary 5.20. Suppose K is a number �eld, [g] ∈ Cl (K ) is an
ideal class and BK as in Assumption 5.18. �en, asymptotically, the
fraction of BK -near primes in the set {a ∈ [g] | N (a) ≤ x } is at least

1

log x .

Proof. See the appendix of the full version of this paper [3]. �

5.3.3 Evaluation analysis. �e ‘loop’ part of Algorithm 4, i.e.

lines 3–12, is the most di�cult part to analyse, since it is not clear

when this loop terminates. �e main question is: how o�en is N (α̂ )
a B-near prime number (as in De�nition 5.7)?

Assumption 5.21. Let

M = exp

(
n

(
logC + logn + 2n(n − 1) +

log |∆K |

2

+ logN (b)

))
,

where the right side is obtained from Proposition 5.11. �en the sam-
pling of (α̂ ) from lines 3–12 of Algorithm 4 happens uniformly dis-
tributed in the set

S = {a ideal of OK | a principal and N (a) ≤ M }
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With above assumption and using Corollary 5.20, the probability

that Algorithm 4 �nds a B-near prime approximately equals

P[(α̂ ) is a principal B-near prime ideal with norm bounded by M]

=
1

logM
=

1

n
(
logC + logn + 2n(n − 1) +

log |∆K |
2
+ logN (b)

)
�is means that one expects to execute the loop part of Algo-

rithm 4 (lines 3–12) around logM times, a number polynomially

bounded by n, log |∆K | and logN (b). So, under the mentioned as-

sumptions, one might suggest that Algorithm 4 is a polynomial

expected time algorithm.

5.3.4 Principalization analysis. �e analysis of the principal-

ization algorithm is very similar to that of the evaluation algo-

rithm. Suppose one wants to apply the principalization algorithm

on

(
α
b

)
m

. Instead of searching principal B-near prime ideals, one

tries to �nd B-near prime ideals c in the ideal class [b]−1 ∈ Cl(K ).
�is is accomplished by �nding ‘relatively small’ β ∈ b and de�ne

c = (β )/b.

Assumption 5.22. Let

M = exp

(
n

(
logC + logn + 2n(n − 1) +

log |∆K |

2

+ logN (b)

))
,

where the right side is obtained from Proposition 5.11. �en the sam-
pling of c from lines 5–9 of Algorithm 3 happens uniformly distributed
in the set

S = {a ideal of OK | a ∈ [b]
−1 and N (a) ≤ M }

As in the previous reasoning about the evaluation algorithm,

one expects to �nd a B-near prime ideal a�er executing the loop in

lines 5–9 of Algorithm 3 approximately logM times. �is, again,

might suggest that the principalization part of the algorithm has

expected polynomial running time. With that, one might imply that

the overall running time of the power residue symbol algorithm

proposed in this paper has expected polynomial running time.

6 RESULTS
In order to strengthen one’s believe in the above heuristic analysis,

we provide in Figure 1 some timings of our implementation of

the power residue symbol algorithm in Magma, applied to various

cyclotomic �elds.
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