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Foreword

Introduction

In this thesis, an algorithm is proposed to compute the power residue symbol(
α
b

)
m

in arbitrary number rings containing a primitive m-th root of unity. The
algorithm consists of three parts: principalization, reduction and evaluation,
where the reduction part is optional. The evaluation part is a probabilistic
algorithm of which the expected running time might be polynomially bounded
by the input size, a presumption made plausible by prime density results from
analytic number theory and timing experiments. The principalization part is
also probabilistic, but it is not tested in this thesis.

The reduction algorithm is deterministic, but might not be a polynomial-
time algorithm in its present form. Despite the fact that this reduction part is
apparently not effective, it speeds up the overall process significantly in practice,
which is the reason why it is incorporated in the main algorithm.

When I started writing this thesis, I only had the reduction algorithm; the
two other parts, principalization and evaluation, were invented much later. This
is the main reason why this thesis concentrates primarily on the reduction al-
gorithm by covering subjects like lattices and lattice reduction. Results about
the density of prime numbers and other topics from analytic number theory,
on which the presumed effectiveness of the principalization and evaluation al-
gorithm is based, are not as extensively treated as I would have liked to.

Since, in the beginning, I only had the reduction algorithm, I tried hard to
prove that its running time is polynomially bounded. When I did not succeed,
I attempted to pose some assumptions I thought to be plausible, in order to
deduce from it that the reduction algorithm is effective. I did not succeed
in making the assumptions plausible nor in deducing the effectiveness of the
reduction algorithm. The short research about these assumptions is placed in
the appendix (see section B.2).
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CHAPTER 1

Number fields and completions

1.1 Introduction

The main subjects of this thesis are the power residue symbol and, to a lesser
extent, the related Hilbert symbol. In order to obtain a clear understanding of
these symbols, one has to be acquainted with algebraic number theory and its
notions: number fields, ideals, orders, integral elements, completions, etcetera.

This chapter will give a quick, incomplete and subjective overview of the
algebraic number theory topics needed. For professional and complete stud-
ies of number fields, I would like to recommend [Jan96] and [CF67]. Another
goal of this chapter is introducing notation, to avoid misunderstandings in the
remainder of this thesis.

We denote the integers by Z, and the rational numbers by Q. We denote
rounding to the closest integer by d·c, and the group of invertible matrices with
entries in Z by GLn(Z).

1.2 Number fields

1.2.1 Finite degree field extensions

Definition 1.1 (Algebraic number field). A number field is a finite degree field
extension of the rational numbers Q.

In this thesis, a number field is often denoted by the capital letter K (from
the German word Körper) with degree n = [K : Q] over the rational numbers.
Also, towers of finite extensions will occur. In that case, the field above K will
be called L. The extension L : K is called a relative extension, in contrast to
K : Q, to which is referred as an absolute extension.

In a computational context, a number field L is defined by an irreducible
polynomial f over its ground field K. Via the isomorphism L ' K[x]/f(x), any
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element of L can be uniquely represented by a vector (k1, . . . , kn) ∈ Kn, with
n = deg f .

Definition 1.2 (Galois extension). Suppose K ⊆ L are both number fields.
The finite degree field extension L : K is called a Galois extension if it is a
normal extension; i.e., if for every irreducible polynomial f(x) ∈ K[x] holds

f(x) has a root in L =⇒ f(x) splits in linear factors over L.

Remark 1.3. Equivalently, a Galois extension L : K is a splitting field of some
polynomial f(x) ∈ K[x], see [Lan05, V§3, i.p. Thm. 3.3]. Every Galois extension
has a Galois group G = Gal(L : K) associated with it, which is a subgroup of
the permutation group on the zeroes of the defining polynomial. J

Definition 1.4 (Abelian and cyclic extensions). Suppose K ⊆ L are both
number fields. The extension L : K is called an abelian extension if it is a
Galois extension with an abelian Galois group. Similarly, an extension L : K is
called cyclic when the Galois group is cyclic.

1.2.2 Number rings

With a number field K one can associate a special subring of K, the ring of
integers. Integers of K, also called integral elements, are recognizable by the
form of their minimum polynomial over Q [SD01, §1, Thm. 1].

Definition 1.5 (Integral elements). Let K be a number field. An element
α ∈ K is called integral iff there exists a monic polynomial f ∈ Z[x] such that
f(α) = 0.

Definition 1.6 (Ring of integers). The ring of integers of a number field K is
now defined as the set of integral elements in K:

OK := {α ∈ K | α is integral }.

Remark 1.7. It is not immediately clear that the above set is a ring. By exam-
ining equivalent notions of being integral one can indeed see that the set OK is
a ring containing Z, see for example [Jan96, Thm. 2.3]. J

The following definition is a slight modification of the definition of an or-
der1in [BS66, p. 88]. An alternative definition can be found in [Coh93, §4.6,
Def. 4.6.1].

Definition 1.8 (Number ring). Let K be a number field of degree n = [K : Q].
Then, a ring R ⊆ K is called a number ring, if:

(i) R is a free Z-module with rank n;

(ii) R ⊆ OK .

Lemma 1.9. The ring OK is a number ring of K.

A proof of this lemma can be found at [Cas86, § 10.3], for example.

1‘Order’ is informally a synonym of ‘number ring’ here, although many authors treat these
two notions differently.
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Notation 1.10. For a number ring R of a number field K, we define the degree
of R to be the degree n = [K : Q] of K.

Remark 1.11. In practice, a number ring is usually of the form R = Z[θ1, . . . , θs],
with θi ∈ OK . In this case, part (ii) of Definition 1.8 is already fulfilled. Also,
often one of the θi has the property that [Q(θi) : Q] = n, implying that Z[θi] ⊆ R
is already a free, rank n Z-module. Then, R ⊆ OK is sandwiched between two
free rank n modules, and is therefore [Lan05, Th. I.7.3] a free rank n Z-module
itself. J

In a computational context one often uses the property that number rings
R always have a so-called integral basis.

Definition 1.12. Let R be a number ring in K, a number field of degree n.
An integral basis of R is an n-tuple (θ1, . . . , θn) ∈ Rn such that every element
α ∈ R can be written uniquely as

α =

n∑
i=1

aiθi with ai ∈ Z.

Example 1.13. The ring Z[i] is the ring of integers of Q(i), and is therefore
a number ring. The integers Z[i] are called the Gaussian integers. Another
example: The ring Z[ζ3] is the ring of integers of Q(ζ3), but it contains for

example the ring Z[
√
−3], since ζ3 = −1+

√
−3

2 . As
√
−3 has degree 2 over Q,

the ring Z[
√
−3] must have rank 2 over Z, and therefore Z[

√
−3] is a number

ring too (but not the ring of integers of Q(ζ3)).
One can straightforwardly see that (1, i) is an integral basis for Z[i], (1, ζ3)

is an integral basis for Z[ζ3] and (1,
√
−3) is an integral basis for Z[

√
−3]. J

Remark 1.14. Note that for a number ring R with quotient field K, a Z-basis
(θ1, . . . , θn) of R is automatically a Q-basis of K. So, every element α ∈ K can
be written uniquely as

∑n
i=1 qiθi, with qi ∈ Q. J

Definition 1.15 (Multiplication matrix). Suppose R is a number ring in a
number field K of degree n, and R has given integral basis (θ1, . . . , θn). Then,
given α ∈ K, one can construct the multiplication matrix Mα ∈Mn×n(Q) of α.
Write θi · α in the integral basis of R, for every 1 ≤ i ≤ n:

θi · α =

n∑
j=1

qijθj .

One then defines the multiplication matrix as Mα := (qij)
n
i,j=1.

Remark 1.16. Seeing K as an n-dimensional Q-vector space via the given in-
tegral basis (θ1, . . . , θn), above matrix Mα can be associated with the linear
map induced by multiplication with α on the vector space K. Note that
Mα ∈ Mn×n(Z) when α ∈ R. Also, observe that Mα heavily depends on
the given integral basis of R. J

Definition 1.17 (Norm and trace). Suppose K is a degree n number field and
R is a number ring with given integral basis B = (θ1, . . . , θn). Then, for α ∈ K,
we have the following fundamental invariants, called the norm and the trace of
α, respectively.

N(α) := detMα;

Tr(α) := Tr Mα.
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Remark 1.18. The norm of an element α ∈ K does not depend on the given
number ring in K nor the basis choice, since change of basis (even to another
number ring) corresponds to (group-theoretic) conjugation of Mα with a tran-
sition matrix. This does not alter the value of the determinant, as it is a
multiplicative homomorphism from Mn×n(Q) to Q.

The trace, however, might depend on the chosen basis and given number
ring. J

Definition 1.19 (Discriminant). Suppose K is a degree n number field and
R is a number ring with given integral basis (θ1, . . . , θn). Then we define the
discriminant of R by

∆(R) := det Tr(θiθj)ij .

I.e., the determinant of the matrix with as ij-th entry the value of the trace of
θiθj (which is in Z).

Remark 1.20. The discriminant is independent of the chosen basis of R, but
it does depend on the number ring. See for example [Cas86, §10.3, Lemma
3.2]. J

Notation 1.21. We will denote the discriminant of the ring of integers of K
by ∆(K) := ∆(OK).

Lemma 1.22. For a number field K with ring of integers OK and with a number
ring R, we have the following identity:

∆(R) = [OK : R]2 ·∆(OK)

Here, [OK : R] is the index of R in OK as additive groups.

Proof. This lemma is a special case of [Neu99, Ch. 1, Prop. 2.12].

1.2.3 Ideal arithmetic

Unique factorization

Lemma 1.23. The ring of integers OK of a number field K is a Dedekind ring,
i.e. it is Noetherian, integrally closed, and every nonzero prime ideal p of OK
is a maximal ideal.

Proof. See for example [Neu99, §I.3, Thm 3.1]

Remark 1.24. In a Dedekind ring, every fractional ideal is invertible [AM69,
Ch. 9, Thm. 9.8], and every ideal factors essentially uniquely as a product of
prime ideals [AM69, Ch. 9, Cor. 9.4]. J

Definition 1.25. For a number field K, we denote by IK the group of (non-
zero) fractional ideals of OK .

Remark 1.26. The set IK is indeed a group, under the following multiplication:

a · b := 〈a · b | a ∈ a, b ∈ b〉

i.e., ab is the ideal generated by products of elements in a and b. The group
IK has ‘unit ideal’ OK = (1). This is the multiplication which is meant when
one ‘factorizes’ an ideal. Note that the unique factorization property has as a
direct consequence that the group IK is a free Z-module of countably infinite
rank, with the prime ideals as its generators. J
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Definition 1.27 (Valuation). Given a prime ideal p of OK , one can define the
valuation vp : (IK , ·) → (Z,+), a group homomorphism. The p-valuation is
defined on prime ideals2 (the generators of IK) as follows:

vp(q) =

{
1 if p = q
0 if p 6= q

Remark 1.28. The unique factorization property of fractional ideals in OK can
now be stated as follows. Every fractional ideal f ∈ IK factors uniquely (up to
order) as

f =
∏
p

pvp(f). (1.1)

J

Factorization of (p)

For a prime number p, the ideal (p) does not have to be a prime ideal in OK .
In fact, in most cases it is not, and it factorizes as a product of prime ideals:

(p) =

g∏
i=1

peii . (1.2)

Via the inclusion Z→ OK , we have Z/pZ→ OK/pi for every factor pi in (1.2).
Since both Z/pZ and OK/pi are fields, one can see this as a field extension.
This leads to the following definition.

Definition 1.29. Let pi be a factor in the factorization of (p) in the ring of
integers OK of a number field K, as in (1.2). Then, we denote:

eK/Q(pi) := ei = vpi(p) and fK/Q(pi) := [OK/pi : Z/pZ].

Remark 1.30. When there is no chance of confusion, one often drops the sub-
script K/Q. Also, one calls e(p) the ramification index of p, and f(p) the residue
class degree. A prime ideal that occurs in the factorization of a prime number
(p), is called a prime (ideal) above p. So, in the case of (1.2), pi is a prime above
p. J

Lemma 1.31. Let K/Q be a Galois extension. Then, for all p, the factorization
of (p) into prime ideals always has a particular form.

(p) =

g∏
i=1

pei ,

and fK/Q(pi) = f , a fixed integer for all 1 ≤ i ≤ g.

Proof. See for example [Neu99, Ch. 1, §9, Prop. 9.1].

Example 1.32. Note that above lemma does not mean that every prime number
has the same factorization properties, as the following example shows. Consider

2By multiplicative continuation, vp defines a group homomorphism IK → Z.
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the number field K = Q(ζ5), a Galois extension of Q. It has ring of integers3

Z[ζ5]. We factorize (11) and (19) in Z[ζ5], with use of [Coh93, §4.8.2].
To obtain a factorization as in (1.2), one has to factorize Φ5(x) = x4 + x3 +

x2 + x+ 1 (the 5-th cyclotomic polynomial) in F11[x]. We have

x4 + x3 + x2 + x+ 1 ≡ (x+ 2)(x+ 6)(x+ 7)(x+ 8) mod 11.

Therefore, (11) =
∏4
i=1 pi, where p1 = (11, ζ5 + 2), p2 = (11, ζ5 + 6), p3 =

(11, ζ5 + 7), and p4 = (11, ζ5 + 8). Note that all of these prime ideals pi have
the same ramification index and residue class degree. In F19[x], one obtains:

x4 + x3 + x2 + x+ 1 ≡ (x2 + 5x+ 1)(x2 + 15x+ 1) mod 19.

Therefore, (19) = q1q2, with q1 = (19, ζ2
5 + 5ζ5 + 1) and q2 = (19, ζ2

5 + 15ζ5 +
1). One sees that all prime ideals above the same prime number p have the
same ramification index and residue class degree, as in Lemma 1.31. Prime
ideals above different prime numbers, however, do not need to have common
properties. J

Example 1.33. This example is about a non-Galois extension Q( 3
√

2) of Q, having
ring of integers Z[ρ] with ρ = 3

√
2 (for a proof, see [AW03, Ex. 7.1.6, p. 153]). The

factorization of prime numbers in Z[ρ] is not as in Lemma 1.31. The polynomial
x3 − 2 factors in the ring F5[x] as

x3 − 2 ≡ (x+ 2)(x2 + 3x+ 4) mod 5

and therefore (5) = p1p2, with p1 = (5, ρ + 2) and p2 = (5, ρ2 + 3ρ + 4). The
first prime ideal has residue class degree 1, whereas the second has residue class
degree 2. J

The following definition is taken from [Coh93, Prop. 4.6.3].

Definition 1.34 (Norm of ideals). The norm as in Definition 1.17 can be gen-
eralized to ideals of a number ring R. The norm of an ideal a of R is defined as
the cardinality of R/a,

N(a) := #(R/a). (1.3)

Remark 1.35. If a = (α) is a principal ideal (i.e., an ideal generated by one
element), then the ideal norm coincides with the absolute value of the regular
(element) norm, as in Definition 1.17. J

Example 1.36. Consider the quadratic number field Q(
√

3); it has ring of integers
Z[
√

3]. The ideal a = (2,
√

3 + 1) is generated by two elements. Clearly we have
N(a) = 2, since a+ b

√
3 ≡ a− b modulo a, for a, b ∈ Z. J

Remark 1.37. One can always effectively compute the norm of an ideal, since
#(R/a) = |detMa|, where Ma is the basis matrix of a in Hermite normal form,
see subsection 2.3.1. J

Lemma 1.38 (Properties of the norm). The norm function of a number ring
R has the following properties:

(i) N(αβ) = N(α)N(β), for elements α, β ∈ R;

3Every cyclotomic field Q(ζm) has Z[ζm] as its ring of integers [Jan96, Ch. 1, Thm. 10.4].
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(ii) If R = OK is the ring of integers, then N(ab) = N(a)N(b), for any two
ideals a, b of OK ;

(iii) If R = OK is the ring of integers, and p is a prime of R, we have N(p) =
pf , with f the residue class degree of p.

Proof. See [Jan96, p. 42–44, Prop. 8.1, 8.2, 8.4].

Greatest common divisor of ideals

The group IK has, besides ideal multiplication, many other operations and one
is of particular importance in this thesis.

Definition 1.39 (Greatest common divisor of ideals). There is a greatest com-
mon divisor operation on IK , which is denoted by +. It is defined as follows:

a + b := {a+ b | a ∈ a, b ∈ b}.

Remark 1.40. As expected, this operation is fully consistent with the unique
ideal factorization; if one has a =

∏
p p

vp(a) and b =
∏

p p
vp(b), then

a + b =
∏
p

pmin(vp(a),vp(b)),

just as in Z. Note that the unique factorization of ideals is just a number field
version of the fundamental theorem of arithmetic. J

1.2.4 Discriminant and singular primes

In practice, one obtains a number ring in the sense of Remark 1.11, without
knowing if it is equal to the ring of integers. Finding the ring of integers of a
given number field K is hard4, and even the decision problem whether a given
number ring R equals the ring of integers or not, is well-known to be hard in the
worst case [Chi89]. On the other hand, finding the ring of integers in number
fields with a defining polynomial having small coefficients and small degree is not
that hard, in practice. Also, for ‘larger’ number fields, effective approximation
algorithms are known [JB94].

In the main algorithms of this thesis (Algorithm 9 and Algorithm 10), one
does not need the full ring of integers. In the tests and the timings of the
algorithm, I only used cyclotomic fields Q(ζm), where the ring of integers is
known to be Z[ζm]. In the case when one does not know if the given ring R is
the ring of integers, one has to take care of the so-called singular primes.

Singular prime ideals

The following definition is obtained from [Ste08, p. 13] in combination with
[Ste08, Prop. 5.4], and requires localization (see [AM69, Ch. 3]). Denote by S
a multiplicatively closed set, and by S−1R the ring of fractions of R at the set
S (see [AM69, p. 37]). Sometimes, S−1R is called the localization of R at S,
despite the fact that S−1R does not have to be a local ring at all.

4In the article [JB94, Th. 1.3] it is proven that finding the ring of integers of a number
field K is equally as hard as finding the largest squarefree divisor of a number d of which the
size equals the size of K.
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Definition 1.41 (Singular prime ideals). Let K be a number field with OK as
ring of integers, and let R be a number ring inside K. Let p be a prime ideal of
R and let S = R\p. One calls p a singular prime when the inclusion R ⊆ OK
induces a strict inclusion when localized at S, i.e.

S−1R ( S−1OK .

Definition 1.42 (Regular primes). A prime ideal p in R is called regular when
it is not singular, i.e., when S−1R = S−1OK .

Remark 1.43. Since p is a prime ideal inside R, S−1R is a local ring; it is denoted
by Rp. On the other hand, S−1OK does not need to be local, since it is well
possible that there are multiple prime ideals in OK that do not touch the set S
(see [AM69, Prop. 3.11(iv)]). J

Lemma 1.44. Suppose R is a number field in K with regular prime p. Then
Rp = (OK)p′ for some unique prime ideal p′ of OK , with p′ ∩R = p.

Proof. The ‘going-up theorem’ [AM69, Thm. 5.10] shows the existence of such
a prime p′, yielding Rp ⊆ (OK)p′ . As Rp = S−1R = S−1OK is a Noetherian
local ring of dimension 1 that is integrally closed5, it is a valuation ring inside
K [AM69, Prop. 9.2]. Valuation rings are maximal, and therefore Rp = (OK)p′ .

Remark 1.45. In Lemma 1.44, the prime ideal p′ = pOK suffices, when p is
regular. This result can be obtained by localizing at every prime of OK ; the
localization of p of R at any ideal q′ 6= p′ of OK vanishes. J

Lemma 1.46. Suppose K is a number field and R be a number ring in K.
Suppose p is a regular prime ideal in R, satisfying p′ ∩R = p for a prime ideal
p′ of OK (see Lemma 1.44). Then the inclusion R ⊆ OK induces a isomorphism

R/p
∼−→ OK/p′. (1.4)

Proof. A short application of a local-global principle will do the job, see for
example [AM69, Prop. 3.9]. Remark that the inclusion induces a map f :
R/p → OK/p′. Seeing those two rings as OK-modules, it is enough to show
that – after localization at any prime – the induced map of f is bijective.

For any prime ideal q′ other than p′, both R/p and OK/p′ become the zero
ring after localization with q′, and the ‘localized’ map f is trivially bijective.
Localizing at p′ induces a bijection by the fact that p is regular, and therefore
Rp = (OK)′p.

Remark 1.47. Note that Lemma 1.46 implies that NOK (p′) = NR(p), as in
Definition 1.34. J

Example 1.48. Note that for the ring of integers OK , every prime p′ is regular.
For an example of a singular prime, consider p = (2, 1 +

√
−3) in the ring

R = Z[
√
−3], a number ring in the number field K = Q(

√
−3). The ring of

integers of K is OK = Z[ρ] with ρ = 1+
√
−3

2 . Take the prime ideal p′ = (2) inside
OK , and note that the map R → OK/p′ is not surjective, since the (reduction

5Those properties are preserved under localization by a multiplicatively closed set S [AM69,
Prop. 7.3], [AM69, Prop. 5.12].
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of the) element ρ is not in the image; every element of Z[
√
−3] is of the form

a+ b
√
−3 = (a− b) + 2bρ with a, b ∈ Z. This maps under R→ OK/p′ to a− b

mod 2. So, R/p → OK/p′ is not surjective, and thus, by Lemma 1.46, p is
singular. J

Lemma 1.49. Let K be a number field with ring of integers OK and let R ⊂
OK be a number ring. Suppose p, a prime above p, is singular in R. Then
p | [OK : R], and therefore p2 | ∆(R).

Proof. Take the multiplicative closed set T = Z\(p), and apply localization to
the exact sequence

0→ R→ OK → OK/R→ 0, (1.5)

yielding the exact sequence [AM69, Prop. 3.3]

0→ T−1R
f−→ T−1OK → T−1(OK/R)→ 0. (1.6)

For S = R\p, we have T ⊆ S, and therefore

S−1(T−1R) = S−1R and S−1(T−1OK) = S−1OK .

Since S−1R ( S−1OK , we must have T−1R ( T−1OK as well, meaning that f
in (1.6) is not surjective, and in particular, T−1(OK/R) is non-trivial.

Now, seeing the rings in (1.5) as Z-modules, and remarking that OK/R is
then a finite Z-module, one obtains that T−1(OK/R) is a finite Zp-module. By
the structure theorem for finitely generated modules of a principal ideal domain
(see for example [Hun03, pp. Lm. IV.6.11]), one has:

OK/R '
r⊕
i=1

Z/qi,

where qi are powers of prime numbers. Since localizing at (p) makes all Z/qi
vanish when p - qi, one has

T−1(OK/R) '
r′⊕
i=0

Z/(pki).

Together with the fact that T−1(OK/R) is non-trivial, one necessarily has p |
#(OK/R). The rest of the claim follows from Lemma 1.22.

Lemma 1.50. Suppose K is a number field with number ring R, that has a set
of singular prime ideals S. Suppose a 6= 0 is an ideal in R with p+a = R for all
p ∈ S (i.e., no singular prime divides a). Then a can uniquely be decomposed
as a product of regular prime ideals:

a =
∏
p/∈S

pnp (1.7)

Proof. According to [AM69, Prop. 9.1], each nonzero ideal of R can uniquely
be expressed as a product of primary ideals, whose radicals are all distinct.

a =

n∏
i=1

qi.
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Suppose qi is a p-radical ideal. Since p is an ideal above a regular prime p,
the ring Rp is a discrete valuation ring [CF67, p. 6, Prop. 1]. In such rings,
every ideal is a power of pRp. So, (qi)Rp = (pRp)j , for some j > 0. At
all other localizations, both qi and p vanish. Using the global-local property
[AM69, Prop. 3.8], we have qi = pj , see also [AM69, Thm. 9.3]. Applying
this reasoning to each primary ideal, we obtain a factorization of a in prime
ideals, which is unique by the same reasoning as in Dedekind rings, see [Neu99,
Thm. 3.3, p. 18].

Remark 1.51. Note that Lemma 1.49 does not yield a procedure to find singular
primes, other than factoring the discriminant ∆(R), but is very useful when
one wants to avoid singular primes, which indeed is needed in Algorithm 8
and Algorithm 10 of this thesis. For an element α ∈ R, one can calculate
d = gcd(N(α),∆(R)). There are two cases.

(i) d = 1, which means that α does not have a singular prime in its fac-
torization. Therefore, the ideal (α) has unique factorization into prime
ideals, making it suitable for the ‘naive’ computation of the power residue
symbol, see Definition 3.4.

(ii) d 6= 1, which means that one has likely a partial factorization of ∆(R).
This is computationally profitable, since this brings us closer to finding
the ring of integers, or proving that R is the ring of integers of K. Also,
one can calculate d′ = gcd(N(α)2,∆(R)), and compute c := d′/d.

(a) If c = 1, then none of the singular primes divide N(α), which means
that α has also unique factorization into prime ideals.

(b) If c 6= 1, it is possible that α does not have unique prime ideal
factorization in R, making α unsuitable to calculate with, since the
power residue symbol above α is then undefined (see Definition 3.15).
Note that factorization of c gives possibly singular primes, which
allows us to enlarge the ring R, meaning that it will become closer
to OK .

J

1.3 Local Fields and Completions

1.3.1 Introduction

In this thesis, one needs the definition of the Hilbert symbol. This symbol is
defined over local fields, which arise naturally as completions of number fields.
A short outline about completions, local fields, and their relation with number
fields will be treated in this section. Also, some computational issues in local
fields will be discussed. For a thorough treatment, I would like to recommend
[Cas86], [Jan96] or [Wei98].

1.3.2 Absolute values

Just as one obtains R from Q by completion, one also can make a completion of
a number field, in a similar way. As completion is a topological construct, one



1.3. Local Fields and Completions 11

first needs a topology on the number field K – in this case, a metric topology.
The following definition is obtained from [Chi07, p. 9, p. 64].

Definition 1.52 (Absolute value). Suppose K is a number field. A function
| · | : K → [0,∞) is called an absolute value if

(i) |α| = 0 if and only if α = 0;

(ii) |αβ| = |α||β| for all α, β ∈ K;

(iii) There is a constant C ∈ R≥1 such that |1 + α| ≤ C when |α| ≤ 1.

An absolute value as above induces a metric topology on K with neighbour-
hoods of the form {α ∈ K

∣∣ |α| < ε} for ε ∈ R+.

Definition 1.53 (Equivalent absolute values). Two absolute values | · |1, | · |2 :
K → [0,∞) are called equivalent when | · |1 = | · |c2 for some c ∈ R\{0}.

Remark 1.54. Equivalent absolute values induce the same topology on K. In
this thesis, we exclude the trivial absolute value, that has value 1 everywhere.
Note that for every absolute value | · |1 on K, there exists c ∈ R\{0} such that
| · |2 := | · |c1 satisfies the triangle identity:

|α+ β|2 ≤ |α|2 + |β|2.

J

Definition 1.55 (Places). A place of K is an equivalence class of absolute
values, with equivalence as in Definition 1.52 denoted by ∼. We define the set
of places of K as

VK :=
{
| · |

∣∣∣ | · | is an absolute value on K
}
/ ∼ .

Theorem 1.56 (Ostrowski). All places of a number field fall into one of the
following categories:

(i) The p-adic places. They contain an absolute value defined by |α|p :=
N(p)−vp(α), with vp the p-adic valuation as in Definition 1.27, and the
norm N of an ideal as in Definition 1.34. These are also called the non-
Archimedean, finite or discrete places of K.

(ii) The infinite real places. They contain an absolute value defined by a real
embedding σ : K → R, with: |α|σ := |σ(α)|R, where | · |R is the standard
real absolute value of R.

(iii) The infinite complex places. They contain an absolute value defined by a
pair of conjugate complex embeddings σ, σ̄ : K → C. The absolute value is
then |α|σ = |α|σ̄ = |σ(α)|2C, with |a + bi|2C = a2 + b2, the standard metric
on C.

Proof. A proof can be found in [ZH80, Ch. 13].

Remark 1.57. If we speak about the places above, we will always associate the
‘standard absolute value’ with it. These are the absolute values as described in
Theorem 1.56. J
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1.3.3 p-adic completions

A number field is not topologically complete. In order to make the number
field K complete with respect to an absolute value | · |, one can construct the
completion of K.

Definition 1.58 (Cauchy and null sequences). A sequence (αi)
∞
i=0 is called a

Cauchy sequence with respect to | · | if we have: For all ε > 0 there exists N ∈ N
such that for all n,m ≥ N holds

|αn − αm| < ε.

A sequence (αi)
∞
i=0 is called a null sequence with respect to | · | if we have: For

all ε > 0 there exists N ∈ N such that for all n ≥ N holds

|αn| < ε.

Definition 1.59 (Completion). Suppose K is a number field and |·| an absolute
value on K. We define the following abelian additive group (under row-wise
addition)

C := {(αi)∞i=0 | (αi)
∞
i=0 is a Cauchy sequence w.r.t. | · |}

and the following subgroup

N := {(α1)∞i=0 | αi)∞i=0 is a null-sequence w.r.t. | · |}.

Then the completion K|·| of K with respect to the absolute value | · | is defined
as the following quotient group:

K|·| := C/N .

Lemma 1.60. The group K|·| is a complete field with multiplication defined row
wise, and has K as a subfield.

Proof. See for example [Jan96, Ch. 2, Thm. 2.1].

Remark 1.61. One denotes Kp for the completion of a number field with respect
to the p-adic metric. Also one uses the notation Kσ for the completion with
respect to the absolute value defined by the embedding σ (inside the real- or the
complex numbers). Note that Kσ ' R when σ is a real embedding and Kσ ' C
if σ is a complex embedding. J

The above abstract construction might not appeal to one’s mind intuitively,
and is in fact very rarely used in a computational context. In the next section,
we will explain how one copes with such fields in an algorithmic context. The
following theorem, of which a generalization is stated in [Jan96, Ch. 2, Thm. 2.2],
already gives an idea how a completion looks like.

Lemma 1.62 (Extension of Qp). Suppose K is a number field and p is a prime
ideal of OK above a prime number p. Then, Kp is a finite extension of Qp, the
p-adic numbers.

Remark 1.63. Lemma 1.62 also works the other way around; every finite exten-
sion of the p-adic field Qp is isomorphic as a topological field to a completion of a
number field [Koc97, p.55–56]. So, in some sense, there is no difference between
completions of number fields and finite extensions of the p-adic rationals. J
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1.3.4 p-adic local fields

Definition 1.64 (p-adic local fields). A p-adic local field is a completion of a
number field with respect to the p-adic absolute value.

Remark 1.65. A p-adic local field Kp has a valuation ring

R := {α ∈ Kp | |α|p ≤ 1},

with unique maximal ideal

m := {α ∈ Kp | |α|p < 1}.

Moreover, this maximal ideal m = (π) is a principal ideal in R, and π is called a
uniformizer of m. It can be obtained by taking an element α ∈ K with α ∈ p\p2,
and taking the image of α under the inclusion K ↪→ Kp [Jan96, Prop. 2.4]. J

Lemma 1.66. Given a system of representatives S (with 0 ∈ S) of R/m, every
element α ∈ Kp has a unique (possibly infinite) expression as a power series

α = πr
∞∑
i=0

siπ
i,

with si ∈ S, s0 6= 0 and r ∈ Z.

Proof. See, for example [Jan96, Prop. II.2.8] or [Koc97, Prop. 1.70].

Notation 1.67. In the remainder of this thesis, F denotes a local field that
is a finite extension of Qp. We will denote by OF the ring of integers and
by mF = (πF ) the unique maximal ideal. Also, we denote FF = OF /mF .
Sometimes, we will denote the mF -valuation of an element in F by vF : F → Z.
Of course, the subscript F will be dropped when there is no confusion about
the local field.

Definition 1.68. Let E : F : Qp be a tower of finite extensions, then we define

f(E/F ) = [FE : FF ] = [OE/mE : OF /mF ],

e(E/F ) = vE(pF ),

for the residue class degree and the ramification index, respectively.

Remark 1.69. For a completion Kp of a number field K, we have e(Kp/Qp) =
e(p) and f(Kp : Qp) = f(p) [Jan96, Thm. II.3.8], with f(p) and e(p) as in
Definition 1.29. Therefore, the fact that those invariants have the same name
will not lead to conflicts. J

Lemma 1.70. Suppose K is a number field and p a is prime in OK . Then the
extension Kp : Qp has degree e(p) · f(p).

Kp

K Qp

Q

n

e(p)f(p)
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Proof. See for example [Jan96, §II, Th.3.8].

Remark 1.71. Also for an ‘arbitrary extension’ F : Qp, i.e., if F is the completion
of some unknown number field, the equality

[F : Qp] = e(F/Qp)f(F/Qp)

is still valid. J

Notation 1.72. For a tower of finite extensions E : F : Qp, the extension E : F
is called unramified when f(E/F ) = [E : F ] and it is called totally ramified when
e(E/F ) = [E : F ]. An extension is not necessarily either unramified or totally
ramified, it can be some ‘mixture’ of these two.

Definition 1.73 (Ramified representation). A finite extension F : Qp is given
in a ramified representation if one has a subfield E ⊆ F , such that F : E is
totally ramified and E : Qp is unramified.

F

E

Qp

e

f

Lemma 1.74 (Ramified Representation). Every finite extension F : Qp has a
ramified representation F : E : Qp.

Proof. We follow [Wei98, Thm. 3-2-5] in combination with [Wei98, Thm. 3-
2-10]. We can choose a generator of the extension [FF : FQp ], and denote
it γ̄. Calculate its minimum polynomial over FQp = Fp, with linear algebra
techniques. Then lift this polynomial to Z[X], and denote it f(x). This will be
the defining polynomial for E : Qp. With Newton approximation [Wei98, §3-1],
one can find an element γ ∈ F such that f(γ) = 0. So, E = Qp(γ) ⊆ F .

Now, take πF ∈ F , a generator of the maximum ideal mF . Seeing F as an
E-vectorspace, one can obtain the minimum polynomial g(z) ∈ E[z] of πF over
E, which is an Eisenstein polynomial [Wei98, Thm. 3-3-1].

Remark 1.75. The inclusion K ↪→ Kp is generally given by the power series
expression of Lemma 1.66. Taking the representative set S = Z + Zγ + · · · +
Zγf−1, and taking an element π ∈ K that lies in p\p2, one can write, for every
α ∈ K,

α = πr
∞∑
i=0

siπ
i.

This can be done in the following way. First assume r = 0, otherwise divide α
by an appropriate power of π. Then, find an element s ∈ S such that α− s ∈ p,
and divide α− s by π, etcetera, until a suitable precision is reached. J
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Definition 1.76 (Teichmüller map). Any extension F : Qp with residue class
degree f , has a primitive pf − 1-th root of unity [Jan96, Th. II.3.9], which is in
fact a ‘Newtonian’ lift of a generator of the residue field FF . Writing µm for the
m-th roots of unity, we have µpf−1 ⊆ F ∗. We denote by ω : F∗F → µpf−1 ⊆ F ∗

the Teichmüller map, which takes the Newton lift of the elements in the residue
field.

Definition 1.77 (Tame and wild ramifications). Let F : Qp be a finite exten-
sion. We call F : Qp tamely ramified (or tame) when p - e(F/Qp). On the other
hand, we call F : Qp wildly ramified when p | e(F/Qp).

Lemma 1.78. Suppose R is a number ring in a number field K, or a ring of
integers of an extension F : Qp. Suppose ζm ∈ R. Then, for any prime ideal p
of R with p - m, we have an injection:

〈ζm〉 = µm ↪→ R/p

Proof. Suppose ad absurdum that ζjm − ζkm ≡ 0 modulo p for some j 6= k.
Multiplying with an appropriate power of ζm gives 1 − ζim ≡ 0 modulo p, for
some i 6= 0. That is, p | 1− ζim.

Using f(x) = xm−1 + . . . + x + 1 =
∏m
i=1(x − ζim), we can conclude that

p | f(1) = m, contradiction.
Therefore, the reduction map µm → R/p is injective.

Remark 1.79. In particular, µ̄m ⊆ (R/p)∗ is a multiplicative subgroup of (R/p)∗,
and therefore m | #(R/p)− 1 = N(p)− 1.

J
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CHAPTER 2

Ideals and lattices

2.1 Introduction

The main component of the heuristic reduction Algorithm 9 in this thesis
is Lenstra-Lenstra-Lovász lattice reduction, often called LLL-reduction. This
polynomial time reduction algorithm [LLL82] gives a ‘relatively good’ solution
to the shortest vector problem (SVP), which is an NP-hard problem [EB81],
[Ajt98].

The heuristic algorithms 9 and 10 in this thesis use the greatest common
divisor of ideals, which is calculated by applying the Hermite normal form to
the basis matrices of those ideals [Coh93, p. 67].

In order to explain those crucial ingredients, I need some notation and defi-
nitions.

2.2 Lattices

Although there are many different ways to define lattices [CS99, p. 3, p. 42], I
will use the following from [Coh93, p. 79–80], which is preferable because of its
simplicity and conciseness.

Definition 2.1 (Bilinear form). Let V be an F -vector space, with F = Q or R.
Then the map b : V × V → F is called a positive-definite (symmetric) bilinear
form if:

(a) b(·, v0) : V → F is a linear map, for fixed v0 ∈ V ;

(b) b(v, w) = b(w, v);

(c) b(v, v) > 0 for all v ∈ V \{0} (positive definite).

Definition 2.2 (Lattice). A lattice L is a free Z-module of finite rank, together
with a positive definite bilinear form on the R-vector space L⊗Z R.
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Notation 2.3. If we replace R by Q in Definition 2.2, then we call L a Q-lattice.

Notation 2.4. For L a lattice with bilinear form b, we will denote

‖v‖b =
√
b(v, v)

for the b-length of the vector v ∈ L. When one has a basis B of L, one can
enrich L with the Euclidean norm. One then writes ‖v‖2 for the Euclidean
vector length, which equals

√
v2

1 + . . .+ v2
n, where (v1, . . . , vn) is v written on

the basis B of L.

Definition 2.5. An n-dimensional lattice L is called an integral lattice if a
basis is given by the rows of a matrix M ∈Mn×n(Z).

Definition 2.2 could be considered as quite abstract, since a lattice is often
just represented by an integer-valued matrix together with the standard inner
product as the bilinear form. In this thesis, it is not much different; the following
example gives you an idea how lattices will be treated here.

Example 2.6. Let L be the lattice Z-generated by the rows of the following
matrix, together with the standard inner product on L⊗Z R:

M =


4 3 2 1
4 2 1 1
5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

 .

The group L is a Z-module, and it is free of rank 4, because it can be sandwiched
between two free modules of rank 4:

L5 ⊆M ⊆ L1,

where L5 is the lattice generated by 5 · I, and L1 the lattice generated by I.
Here, I is the unit matrix with dimension 4. J

In fact, any lattice can be viewed as an integer-valued matrix together with
an inner product [Coh93, p. 80]: since L is free Z-module of finite rank, it has
a finite Z-basis, say: {b1, . . . ,bn}. Then, one can write every element x ∈ L as
a Z-linear combination of those basis elements:

x =

n∑
i=1

vibi with vi ∈ Z.

Therefore, such an x can be represented by v = (v1, . . . , vn) ∈ Zn. Note that
this representation heavily relies on the choice of the basis. Taking y ∈ L,
represented by w = (w1, . . . , wn), the bilinear form b on L satisfies:

b(x, y) = b

 n∑
i=1

vibi,

n∑
j=1

wjbj

 =

n∑
i=1

n∑
j=1

viwjqij where qij = b(bi,bj),
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which equals

[
v1 v2 . . . vn

]
Q


w1

w2

...
wn

 with Q = (qij).

The matrix Q gives rise to an important invariant of the lattice L.

Definition 2.7 (Determinant of a lattice). Let L be a lattice, with a bilinear
form b. Choose a basis {b1, . . . ,bn} of L and set Q = (b(bi,bj)). Then, the
determinant of the lattice is the following real invariant:

∆(L) =
√

det(Q).

The definition of ∆(L) is independent of base change; a change of basis from
(c1, . . . , cn) to (b1, . . . ,bn) coincides with multiplying the vectors v ∈ Zn with
a ‘transition matrix’ Mc→b ∈ GLn(Z). So, if v represents the element x ∈ L
with respect to the chosen basis (c1, . . . , cn), then the vector Mc→bv represents
the same element x ∈ L but now with respect to the other basis (b1, . . . ,bn).
Let Q be the same matrix as in the description above, then:

b(x, y) = (Mc→bv)
T
Q (Mc→bw) = vTMT

c→bQMc→bw = vTQ′w

with Q′ = MT
c→bQMc→b. Since Mc→b is in GLn(Z), and those matrices have

determinant ±1, we conclude that detQ′ = detQ. Also, Q is necessarily a
positive definite matrix, by definition, and therefore detQ has to be positive,
making

√
detQ a real number. So, in short, the determinant of a lattice is well

defined. Note that the determinant of the lattice clearly depends on the chosen
bilinear form on L.

Example 2.8. Using the same lattice as in Example 2.6, one sees that B =
(b1, . . . ,b4) = ((4, 3, 2, 1), (4, 2, 1, 1), (5, 0, 0, 0), (0, 5, 0, 0)) is a basis for L, be-
cause

5(b1 − b2)− b4 = (0, 0, 5, 0),

and
5b1 − 4b3 − 3b4 − 2(0, 0, 5, 0) = (0, 0, 0, 5).

Calculating inner products yields the following matrix Q = (qij):

Q =


30 25 20 15
25 22 20 10
20 20 25 0
15 10 0 25


with determinant 625 = 54, so the lattice L has determinant detL =

√
625 =

25. J

The invariant ∆(L) also has a more intuitive geometrical interpretation; it
is the volume of the parallelepiped solid inside L⊗ R, spanned by a basis of L:

S := {r1b1 + . . .+ rnbn | 0 ≤ ri < 1}.

This parallelepiped is often referred to as the covolume of the lattice and is
denoted by V/L, where V = L⊗R. Now, we will end this section with a useful
lemma, that helps us calculate the determinant of an integral lattice in an easier
way.
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Lemma 2.9. For a full rank lattice L generated by an integral matrix M , to-
gether with the standard inner product, we have

∆(L) = #(Zn/L).

Proof. See [Cas97, p. 14, Lm. 1] or [PZ89, §3.2, Lm. 3.6].

2.3 Ideals as lattices

2.3.1 Basis matrix of a lattice

Suppose we have a number field K of degree n, with some number ring R ⊆ K.
Since R is a Q-lattice inside K, it has a Z-basis, (b1, . . . ,bn). After the choice
of this basis, we have

Zb1 + . . .+ Zbn = R,

as Z-modules. So, in this particular way, R is identifiable with the lattice
generated by In (the unit matrix in dimension n).

An ideal a of R is a sublattice of the lattice of R, and can therefore be
expressed in a basis of its own: (c1, . . . , cn). Since each of those basis elements
ci are in R, one can write them as a linear combination of the basis (b1, . . . ,bn):

ci =

n∑
j=1

tijbj ,

meaning: c1

...
cn

 = T

b1

...
bn

 with T = (tij) an integer valued matrix.

So, in fact, the matrix T expresses the basis of a on the basis of R.

Definition 2.10. A matrix Ta that expresses a Z-basis of the lattice a in the
chosen Z-basis of the lattice R, is called a basis matrix of a.

In a computer algebra system like Magma or Sage, ideals are often repre-
sented by a basis matrix, after a fixed basis choice of R. The disadvantage of
the above definition is that a basis matrix is not unique, since it clearly de-
pends on the basis of a. Also, such a matrix T can have large entries, making
it unpleasant to calculate with.

Lemma 2.11. Let b be an ideal of OK , and let Lb be the ideal lattice generated
by the basis matrix of b, with respect to some integral basis of OK . Then one
has

detLb = N(b).

Proof. Let n = [K : Q]. The group Zn/Lb is then canonically isomorphic to
OK/b. According to Lemma 2.9, we have

detLb = #(Zn/Lb) = #(OK/b) = N(b).
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2.3.2 The Hermite normal form

To ensure uniqueness of the basis matrix and to obtain good matrix properties,
most computer algebra systems use the Hermite normal form, abbreviated the
HNF. The following definition is adapted1 from [Coh93, p. 67].

Definition 2.12 (Hermite normal form). An m×n integer valued matrix M =
(mij) is in Hermite normal form if there exists an r ≤ m and a strictly increasing
map f : {1, . . . ,m− r} → {1, . . . , n} satisfying the following properties.

(a) The last r rows of M are equal to zero;

(b) mi,f(i) > 0 for 1 ≤ i < m− r;

(c) mi,j = 0 when j < f(i);

(d) 0 ≤ mj,f(i) < mi,f(i) for j < i.

The above definition is quite formalistic and does not really appeal to one’s
imagination. In the case that M is a full rank n × n integer valued matrix,
Definition 2.12 simplifies drastically.

Lemma 2.13 (Hermite normal form for full rank square matrices). A full rank
integer valued n× n matrix M = (mij) is in Hermite normal form if

(i) M is upper-triangular;

(ii) The diagonal entries of M are strictly positive;

(iii) For i < j we have 0 ≤ mij < mjj, i.e., every upper-diagonal entry is
(strictly) smaller than the diagonal entry in its column.

Proof. Following Definition 2.12, we have n = m in this case. Therefore r = 0
and f = id, since f is strictly increasing. Then the upper-triangle form of M
follows from part (c) of Definition 2.12, positiveness of the diagonal entries from
part (b) and property (iii) is a direct translation of part (d) of Definition 2.12.

Figure 2.1: A matrix plot of a matrix in Hermite normal form. More red means
a larger number (in absolute value).

Also full rank m × n-matrices with m ≥ n in Hermite normal form have a
shape that is easy to describe.

1In the literature, most authors differentiate between row-HNF and column-HNF. Cohen
uses column-HNF, whereas I prefer row-HNF, so I altered the definition somewhat.
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Lemma 2.14 (Hermite normal form for full rank matrices). A full-rank integer
valued m× n matrix M = (mij) with m ≥ n is in HNF if

(i) The last m− n rows are zero;

(ii) The first n rows form a square matrix in HNF (as in Lemma 2.13).

Proof. The rank of M is equal to n, so M has at least n nonzero rows, so
r ≤ m− n, with r as in Definition 2.12. Because f is strictly increasing, it is in
particular injective. Therefore, m − r ≤ n, which is equivalent to m − n ≤ r.
So, we can conclude r = m−n, which proves (i). Note that this directly implies
that f = id and, thus, with the same arguments as in Lemma 2.13, the upper
square submatrix of M is in Hermite normal form.

Example 2.15. The following matrices are in HNF:


3 1 0 2
0 3 2 1
0 0 5 4
0 0 0 10

 ,


6 4 2 1 3
0 0 4 3 2
0 0 0 0 5
0 0 0 0 0

 and


5 20 13 2
0 23 3 0
0 0 15 3
0 0 0 4
0 0 0 0
0 0 0 0

 .

The left matrix clearly satisfies the requirements of Lemma 2.13, and the middle
matrix satisfies Definition 2.12 with r = 1, f(1) = 1, f(2) = 3, f(3) = 5. Note
that this matrix is not a full rank one. The right matrix is clearly in HNF as in
Lemma 2.14. J

2.3.3 Computing the HNF

The proof of the following theorem about the Hermite normal form partially
consists of an algorithm, which is adapted from [Coh93, p. 67]. The theorem
is stated in its full form, whereas only a short outline of the HNF-algorithm is
given, for sake of brevity.

Theorem 2.16. Let M be an m × n integer-valued matrix, then there exists
a unique m × n matrix H in Hermite normal form such that H = UA, with
U ∈ GLm(Z).

Proof. Algorithm 1 ensures the existence of such an Hermite normal form; and
since every row operation used is representable by a GLm(Z)-matrix, one can
conclude that H = UA for some U ∈ GLm(Z), where U is just the product of
these row operations.

Suppose H = UA and H ′ = U ′A, then H ′ = U ′U−1UA = U ′U−1H. Writing
U ′′ = U ′U−1, one sees: For uniqueness it is sufficient to prove that H ′ = UH
for some U ∈ GLm(Z) implies H = H ′.

Both H ′ and H are in Hermite normal form; we denote the corresponding
strictly increasing functions with f ′ respectively f and the amount of zero-rows
at the bottom with r′ respectively r. The row rank of the matrices H and H ′

are m− r, m− r′ respectively. Since a matrix U ∈ GLm(Z) does not alter the
row rank, we immediately conclude r = r′. So, f and f ′ have the same domain
and codomain. The strictly increasing property of f and f ′ implies that U must
be a upper triangular matrix – and with the fact that U ∈ GLm(Z) and that the
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so-called ‘pivot entries’ hk,f(k) and h′k,f ′(k) are strictly positive, we must have

that the diagonal of U consists of ones. This immediately implies f = f ′ and
hk,f(k) = h′k,f ′(k). The property (d) of Definition 2.12 then implies H = H ′.

Algorithm 1 is obtained from [Coh93, p. 69], again with slight modifications.
Although it is possible to keep track of the matrix U , this algorithm does not do
that – for sake of brevity. Additionally, in practice, Algorithm 1 is nót the right
recipe to compute Hermite normal forms effectively, because of coefficient explo-
sion [HM90]. Instead, in real implementations, one uses tricky modifications of
Algorithm 1, with modular arithmetic. This results in an algorithm, computing
the HNF, that has a running time of O(mn4 log2(M)) for m× n-matrices with
entries bounded by M [MW01].

Algorithm 1: Computes row-Hermite normal form of a matrix A

1 HNF(A);
Input : An m× n integral matrix A
Output: A matrix H such that H = AU is in HNF, with U ∈ GLn(Z)

2 c := 1, r := 1 ; // c and r are for column and row where we are calculating

3 while c ≤ n do
4 while there exist a non-zero entry below ar,c do
5 Choose smallest non-zero aic with i ≥ r ; // smallest in abs. value

6 and swap rows Ai and Ar ;
7 for i > r do

8 Ai := Ai −
⌊
aic
arc

⌉
·Ar ; // Reduces every row below r with row Ar

9 end

10 end
11 if arc < 0 then
12 Ar := −Ar ;
13 end
14 if arc 6= 0 then
15 for i < r do

16 Ai := Ai −
⌊
aic
arc

⌋
·Ar ; // Reduces every row above r with row Ar

17 end
// Row r and column c of A are reduced now.

18 c := c+ 1, r := r + 1 ;

19 else
20 c := c+ 1 ;
21 end

22 end
23 Move all zero rows of A to the bottom ;
24 return H := A ;

2.3.4 HNF and operations on ideals

The HNF has many applications [Coh93, p. 74], but in this thesis it is only used
for computing the greatest common divisor of two ideals, see Definition 1.39.
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Algorithm 2, adapted from [Coh93, p. 74, Sum of Modules], computes the ideal
GCD of two ideals in a number field, using the HNF.

Algorithm 2: Computes the ideal a + b from the ideals a and b.

1 IdealGCD(a, b);
Input : Two ideals a, b in a number ring R, represented by their basis

matrices
Output: The ideal a + b, represented by its basis matrix

2 Concatenate the two basis matrices Ma and Mb vertically, and call this
matrix M ;

3 Calculate the HNF of this matrix, call the result M ;
4 Extract S, the upper square matrix of this matrix M ;
5 Return S as basis matrix of the ideal a + b ;

2.4 Lattice reduction: LLL

2.4.1 Introduction

The invention of the LLL-algorithm in 1982 by Lovász and the two Lenstra
brothers was a breakthrough in the research about reduced bases [LLL82]. Al-
though first intended for solving factorization in Q[X] and integer linear pro-
gramming, the algorithm has a vast amount of applications now, mostly ap-
pearing in cryptography and number theory [NV10].

In this thesis, I will give a short description of the LLL-algorithm, together
with some lemmata saying something about the running time and the quality
of the output.

2.4.2 Reduced bases

From Definition 2.2, we know that every lattice L has a Z-basis (b1, . . . ,bn)
in L; indeed, a lattice has infinitely many Z-bases. From a computational
viewpoint, some bases are better than others. Bases with relatively short and
nearly orthogonal basis elements are a better choice for computing. In vector
spaces it is clear that one can always find such a basis, by applying the Gram-
Schmidt orthogonalization process. The following notation is based on that
fact.

Notation 2.17. For a Z-basis (b1, . . . ,bn) of L, define inductively the following
orthogonalized basis by applying the Gram-Schmidt process.

b∗i := bi −
i−1∑
j=1

µijb
∗
j where µij =

b(bi,b
∗
j )

b(b∗j ,b
∗
j )

for i = 1, . . . , n.

Note that, in general, the basis (b∗1, . . . ,b
∗
n) is not a Z-basis of L, but it ı́s an

R-basis of L⊗R. This is mainly caused by the the fact that the Gram-Schmidt
coefficients µij are not integral, in general. The following definition uses above
notation and is adapted from [NV10, p. 37, Def. 15].
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Definition 2.18 (Size-reduced). A basis (b1, . . . ,bn) of a lattice L is called
size-reduced if ∣∣∣∣ b(bi,b∗j )b(b∗j ,b

∗
j )

∣∣∣∣ = |µij | ≤
1

2
for 1 ≤ j < i ≤ n.

Algorithm 3 is obtained from [NV10, p. 43] and computes a size-reduced
basis from an arbitrary basis, in O(n5 log(M)2) time. Here n is the degree and
M is the upper bound on the matrix entries.

Algorithm 3: Size-reduction algorithm

1 SizeReduce(B);
Input : A basis B = (b1, . . . ,bn) of a lattice L
Output: A size-reduced basis B = (b1, . . . ,bn) of the lattice L

2 Compute Gram-Schmidt coefficients µij .
3 for i := 2 to n do
4 for j := i− 1 to 1 do
5 bi := bi − dµijcbj
6 for k = 1 to j do
7 µik := µik − dµijcµjk
8 end

9 end

10 end

Example 2.19. Let L be the lattice generated by (b1,b2,b3) below, together
with the standard inner product. The rows of the matrix form a Z-basis of L,
and this basis is not size-reduced. We haveb1

b2

b3

 =

1 2 3
0 1 10
0 0 3

 and


b∗1

b∗2

b∗3

 =


1 2 3

− 16
7 − 25

7
22
7

17
130 − 1

13
1

130

 ,
with µ2,1 = 16

7 , µ3,1 = 9
14 and µ3,2 = 22

65 . One sees that µ2,1 and µ3,1 violate
the condition of being size-reduced, see Definition 2.18.

J

The following definition from [LLL82] (in this form obtained from [NV10,
p. 48]) gives a stronger version of ‘being reduced’ than being size-reduced only;
the additional constraint is often called Lovász’ condition. Recall (from No-
tation 2.4) that ‖v‖b =

√
b(v, v), where b is the bilinear form on the lattice

L.

Definition 2.20 (LLL-reduced). Let δ be a real in [1
4 , 1]. A basisB = (b1, . . . ,bn)

is called δ-LLL-reduced if:

(Size reduced) B is size-reduced as in Definition 2.18.

(Lovász) For 1 < i ≤ n:

δ · ‖b∗i−1‖2b ≤ ‖b
∗
i ‖2b + µ2

i,i−1‖b
∗
i−1‖2b
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Algorithm 4 is obtained from [NV10, p. 48], and is a slightly simplified form
of the ‘real’ LLL-algorithm. Although this simplified algorithm is much slower,
LLL normally has time complexity O(n5m · (log1/δM)3) for an n ×m matrix
with entries bounded by M , see [NV10, p. 150, Thm. 3].

Algorithm 4: The simplified LLL-algorithm

1 LLL(B, δ);
Input : A basis B = (b1, . . . ,bn)
Output: A δ-LLL-reduced basis B = (b1, . . . ,bn)

2 do
3 Size-reduce the basis B;
4 Find the smallest i in {2, . . . , n} which violates the Lovász condition,

i.e.:
δ · ‖b∗i−1‖2b > ‖b

∗
i ‖2b + µ2

i,i−1‖b
∗
i−1‖2b

5 Swap bi and bi−1;

6 while there exists an index i which does not satisfy the Lovász condition;

Definition 2.21 (Successive minima). Let L be a lattice of dimension n. Define
the set

Bi :=
{
V = {v1, . . . , vi} ⊆ L

∣∣∣ V is a linearly independent set of vectors
}
,

and define, for V = {v1, . . . , vi} ∈ Bi, ‖V ‖b = max1≤j≤i‖vj‖b. Then, the i-th
successive minimum of L is defined as follows:

λi(L) := min
V ∈Bi

‖V ‖b.

Remark 2.22. Note that λ1(L) is just the b-length of the shortest vector in
L. J

Theorem 2.23 (Minkowski’s second theorem). Let L be a lattice of rank n.
Then for any integer 1 ≤ r ≤ n, one has(

r∏
i=1

λi(L)

)1/r

≤ √γn ·∆(L)1/n

where γn is the nth Hermite’s constant, which can be bounded by 1 + n
4 [NV10,

p. 33-35].

Proof. See for example [Mic, Thm. 12], [LG87, Thm. 2.9.1], [NV10, p. 35],
[Cas97, Ch. VIII, p.202] or the historically correct [Min10, § 51].

The LLL-algorithm, of which a simplified form is shown in Algorithm 4, has
the following bounds on its output [NV10, p. 48], where ‖·‖b is the b-induced
norm.

Theorem 2.24. Let δ ∈ ( 1
4 , 1] and ρ = 1/(δ − 1

4 ), and let (b1, . . . , bn) be a
δ-LLL-reduced basis of a lattice L. Then:
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(a) ‖b1‖b ≤ ρ
n−1

4 ·∆(L)
1
n ;

(b) For all 1 ≤ i ≤ n we have ‖bi‖b ≤ ρ
n−1

2 λi(L);

(c)
∏n
i=1‖bi‖b ≤ ρ

n(n−1)
4 ∆(L).

Remark 2.25. In this thesis, δ always equals a half, which yields ρ = 2. For
sake of readability, if we use the above result, we just take ρ = 2. One could be
tempted to maximize δ, but since the running time of the algorithm depends
on the choice of δ, a large δ is not always preferable. J

2.5 Element reduction modulo an ideal

In the heuristic algorithm, it is important that one can find ‘small’ representa-
tives in the quotient ring R/b; the termination of the algorithm depends on it.
For general number rings, finding a small representative for an element α mod
b is difficult, since this is equivalent to finding short vectors in translated ideal
lattices, which is believed to be hard [ILC], [LPR10] and [SS11].

Fortunately, in the main algorithm of this paper, it is sufficient to find a
‘relatively small’ representative; and therefore, LLL applies here. We will first
define and describe how to reduce modulo a basis matrix.

Definition 2.26. Let α ∈ R, a number ring, and let Mb = (m1, . . . ,mn) be a
basis matrix of an ideal b of R. The element α is Mb-small if

α =

n∑
i=1

cimi for some ci with |ci| ≤ 1/2.

Alternatively, an element α ∈ R is Mb-small if it is in the following span:
{c1m1 + . . . + cnmn | |c1|, . . . , |cn| ≤ 1/2}. Computing an Mb-small represen-
tative is not difficult and can be done by the following algorithm, adapted from
[Coh00, Algorithm 1.4.13, p. 33].

Algorithm 5: Reduction modulo a basis matrix

1 ReductionModBasisMatrix(α,Mb);
Input : An element α ∈ R and a basis matrix Mb of an ideal b of R.
Output: An element α′ ∈ R such that α ≡ α′ mod b, and α′ is Mb-small

2 Solve for v in the linear system vMb = α;
3 Round every entry of v, i.e. vi := bvie for every i;
4 Return α′ := α− vMb.

Remark that the size of a Mb-small element α heavily relies on the size of the
basis elements (m1, . . . ,mn). So, naturally, in order to find a relatively small
representative of α modulo b, one first LLL-reduces the basis matrix Mb, and
then one calculates an Mb-small representative of α, see Algorithm 6.

Lemma 2.27. Suppose α is a small representative modulo an ideal b, then we
have

‖α‖b ≤ 2
d−3

2

d∑
i=1

λi(Lb),

where Lb denotes the lattice of the ideal b.
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Algorithm 6: Finding a relatively small representative modulo an ideal

1 SmallRepresentative(α, b);
Input : An element α ∈ R, an ideal b.
Output: An element α′ ≡ α mod b, such that α′ is ‘relatively small’

2 Find a basis matrix Mb;
3 LLL-reduce this matrix;
4 Return ReductionModBasisMatrix(α,Mb);

Proof. Using the triangle inequality yields

‖α‖b = ‖
n∑
i=1

cimi‖b ≤
1

2

n∑
i=1

‖mi‖b ≤ 2
d−3

2

d∑
i=1

λi(Lb).

Remark 2.28. The bound in Lemma 2.27 does not seem really useful, since the
second successive minimum λi(L) can be really large [NV10, p. 35], in arbitrary
lattices L.

Note that – assuming that the λi(L) do not vary too much for different i
– one may heuristically deduce, by Theorem 2.23, that λi(L) ≈ √γn∆(L)1/n.
Then, above bound simplifies to (also, see Lemma 2.11)

‖α‖b ≤ 2
d−3

2

d∑
i=1

λi(L) ≈ 2
d−3

2 · d · √γn ·∆(Lb)1/n = 2
d−3

2 · d · √γn ·N(b)1/n,

which is, at least for ideals with superexponential norm in n, quite a good
bound. When b = (β) and K : Q is Galois, we have N(β)1/n = n

√∏n
i=1 σ(β) ≤

maxσ |σ(β)|C. J

2.6 q-ary lattices

2.6.1 Introduction

In the starting phase of my research about the power residue symbol I attempted
to compute the principal power residue symbol by reduction (i.e. Algorithm 9)
solely. Proving that such a reduction algorithm terminates in polynomial time
seemed to require extra assumptions about finding short vectors in q-ary lattices.
These assumptions are formulated in the appendix, in Conjecture B.1, which is
called the QSDL-conjecture.

Later in the process of writing my thesis, I found that applying reduction
only is not enough (see Remark 5.11). To overcome this problem, I attempted a
probabilistic way (Algorithm 10) to compute the principal power residue symbol,
which seems to perform better than the reduction algorithm (see Figure 5.1, 5.2
and 5.3).

Having difficulties with proving that – assuming the QSDL-conjecture – the
proposed reduction algorithm indeed terminates within polynomial time and
lacking empirical evidence in the form of a trend in the timings (see Figure 5.2
and Figure 5.3), I decided to move the section about the QSDL-conjecture to
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the appendix (see section B.2). Also, it was suggested [Mic16] that, in theory,
the chances that the QSDL-conjecture is true, are pretty slim.

So, briefly, I omit the QSDL-conjecture because it is not needed due to the
evaluation algorithm, because I didn’t find a way to deduce the termination of
the reduction algorithm from it, and because some articles and authors suggest
that the conjecture is not true (see Remark B.4).

2.6.2 q-ary lattices in the reduction algorithm

In this subsection – where we assume all lattices to live in Rn – a special form
of lattices is treated: so-called q-ary lattices. We assume that lattices are given
with some chosen basis, on which a bilinear map can be defined, see Remark 2.41.

Definition 2.29 (q-ary lattice). Let q ∈ Z be a prime. An n-dimensional
integral lattice L is called q-ary iff

qZn ⊆ L

Notation 2.30. Let q ∈ N. We denote Lq for the lattice qZn.

Definition 2.31 (square-dense q-ary lattices). Let q ∈ Z be a prime and let n
be even. An n-dimensional q-ary integral lattice L is called square-dense if

(a) Lq ⊆ L (q-ary);

(b) ∆(L) =
√

∆(Lq).

There occur q-ary square-dense lattices in the main algorithm of this thesis,
and they are always like in the following notation.

Notation 2.32. Suppose R is a number ring of degree n, α, β ∈ R are coprime
elements of R and q is a prime number, also coprime to α, β. Then, the kernel
of the map fα,β : R×R→ R/q, (γ1, γ2) 7→ γ1α−γ2β mod q is denoted by Lqα,β .

Remark 2.33. The requirement that α and β are coprime is not necessary in
this definition. However, this specific lattice will be used in Algorithm 9 to

calculate the power residue symbol
(
α
β

)
m

, in which one does require α and β

to be coprime. In the following lemma the exactness at R/qR is proven with
the coprimeness of α and β; in fact Rα+Rβ +Rq = R is enough to prove this
claim. J

Lemma 2.34. The abelian group Lqα,β is a q-ary square-dense lattice inside

R2n. It fits inside the following exact sequence:

0→ Lqα,β → R×R fα,β−−−→ R/qR→ 0

Proof. Since the number field R has degree n over Q, the lattice R × R is 2n-
dimensional, and so is Lqα,β . It is q-ary, because qZ2n = qR× qR ⊆ Lqα,β , since

q-multiples are mapped to zero under fα,β . Assuming that Lqα,β is indeed well-

posed in the exact sequence, one immediately sees that (R×R)/Lqα,β ' R/qR,

which has qn elements. Therefore Lqα,β has covolume qn.
We still have to prove that the above sequence is exact. It is exact at R/qR,

since fα,β is clearly surjective, because α and β are coprime; one can find γ1, γ2

such that γ1α+ γ2β = 1. It is exact at R×R and Lqα,β by definition.
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In the reduction Algorithm 9, the lattice Lqα,β , is given by a matrix, instead
of given as a kernel of some map. The matrix is constructed with a fixed recipe,
see Algorithm 7.

Algorithm 7: Constructs generating matrix of Lqα,β

1 GeneratingMatrix (α, β, q,B);
Input : Elements α, β ∈ R a number ring, a prime number q and a

basis B = (b1, . . . ,bn) of the ring R.
Output: The matrix N that generates the lattice Lqα,β w.r.t. the basis B.

2 Construct the n× n multiplication matrices Mβ and Mα with respect to
the given basis B of R, see Definition 1.15 ;

3 Reduce every entry in Mβ and Mα modulo q ;
4 Call these matrices M̄β and M̄α, respectively ;
5 Concatenate M̄β and M̄α horizontally, yielding a n× 2n matrix ;
6 Concatenate the resulting matrix vertically above the matrix qI2n ;
7 Call the resulting matrix N ;
8 return N ;

Figure 2.2: The construction of the matrix N , as in Algorithm 7

Lemma 2.35. The rows of the matrix N as in Algorithm 7 generate the lattice
Lqα,β.

Proof. Let LN be the lattice generated by the rows of N .

(LN ⊆ Lqα,β) It is enough to show that every row of N is inside Lqα,β . For the
rows of qI2n this is evident. The upper n rows of N consists of elements of
the form (β·bi, α·bi), modulo q. Under fα,β this sends to β·bi·α−α·bi·β ≡
0 mod q. So, indeed this inclusion is right.

(LN ⊇ Lqα,β) Suppose (γ1, γ2) ∈ Lqα,β . Then, γ1α − γ2β ≡ 0 mod q, i.e. γ1α ≡
γ2β mod q. So, we have η = γ1β

−1 ≡ γ2α
−1 modulo q, where the inverses2

are taken modulo q. Then we have

βη ≡ γ1 and αη ≡ γ2 mod q.

2Note that α, β are coprime to q.



2.6. q-ary lattices 31

Therefore, (γ1, γ2) ≡ (βη, αη) modulo q, so, (γ1, γ2) ∈ LN .

2.6.3 Different inner products

The goal of finding a short vector inside the lattice Lqα,β , is obtaining γ1, γ2 ∈ R
such that

(1) γ1 is ‘small’ (i.e. smaller than α and β);

(2) γ1α−γ2β
q is ‘small’ (idem).

One can use these elements to compute the power residue symbol
(
α
β

)
m

as in

Algorithm 9. A natural choice for an norm on Lqα,β , is then a weighted norm:

Definition 2.36. The following norm on Lqα,β is called the weighted norm
(weighted by α, β and q).

‖(γ1, γ2)‖α,β :=

√(
‖γ1α+ γ2β‖2

q

)2

+ ‖γ1‖22.

Here ‖·‖2 denotes the `2-norm on the vectors γ1α+ γ2β and γ1 with respect to
a fixed basis B of R.

Definition 2.37. The following norm on Lqα,β is called the unweighted norm.

‖(γ1, γ2)‖2 =
√
‖γ1‖22 + ‖γ2‖22,

again with ‖·‖2 the `2-norm.

Lemma 2.38. For Lqα,β together with the unweighted norm ‖·‖2, we have:

∆(Lqα,β) = qn

Proof. This is just Lemma 2.34.

Lemma 2.39. For Lqα,β together with the weighted norm ‖·‖α,β, we have:

∆(Lqα,β) = N(β)

Proof. The norm ‖(γ1, γ2)‖α,β :=

√(
‖γ1α+γ2β‖2

q

)2

+ ‖γ1‖22 coincides with the

following inner product matrix

Q =
1

q2

[
MT
αMα + q2In MT

βMα

MT
αMβ MT

βMβ

]
.

Since
‖γ1α+ γ2β‖22 = (γ1Mα + γ2Mβ) • (MT

β γ
T
2 +MT

α γ
T
1 )

=
[
γ1 γ2

]
·
[
Mα

Mβ

] [
MT
α MT

β

]
·
[
γT1
γT2

]
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=
[
γ1 γ2

]
·
[
MαM

T
α MαM

T
β

MβM
T
α MβM

T
β

]
·
[
γT1
γT2

]
we have(
‖γ1α+ γ2β‖2

q

)2

+ ‖γ1‖22 =
[
γ1 γ2

]
· 1

q2

[
MαM

T
α + q2I MαM

T
β

MβM
T
α MβM

T
β

]
·
[
γT1
γT2

]
.

The matrix determinant formula3 det

[
A B
C D

]
= det(D) · det(A − BD−1C)

applies here:

det(Q) =
1

q4n
det(MβM

T
β ) det(MαM

T
α + q2In−MαM

T
β · (MT

β )−1M−1
β ·MβM

T
α )

=
1

q4n
det(MT

βMβ) det(q2In) =
1

q2n
det(MβM

T
β ) =

N(β)2

q2n

Denote L0 for the lattice defined by the identity matrix, with the weighted

norm. Then we have ∆(L0) =
√

detQ = N(β)
qn , by above calculations. Now,

using the identity ([Cas97, p. 14, Lm. 1] [PZ89, §3.2, Lm. 3.6])

∆(L′) = [L : L′] ·∆(L),

for sublattices L′ ⊆ L , we obtain

∆(Lqα,β) = [L0 : Lqα,β ] ·∆(L0) = qn · N(β)

qn
= N(β).

Remark 2.40. Lemma 2.39 shows us that we might expect that using LLL with
the weighted norm does not give us much shorter vectors than ordinary two-
sided reduction, as is discussed in subsection 4.3.2. I use the unweighted norm
in the reduction algorithm. The disadvantage of using the unweighted norm is
that one has no control over the size of γ1α+ γ2β, even if γ1 and γ2 are small.
However, heuristically, one might assume – at least in cyclotomic fields Q(ζm)
with not ‘too composite’ m – that the product of two small elements in the
Euclidean norm, will have a small Euclidean norm too. This assumption is not
a very plausible one. J

Remark 2.41. One could also use the ‘canonical norm’ on K. Denoting KR :=
K ⊗Z R, one defines the canonical bilinear form as follows.

b(x, y) :=
∑

σ:KR→C
R-algebra homomorphisms

σ(x)σ(y).

The main advantage of this form is that it is independent of choice of basis, and
that it is submultiplicative, i.e. ‖xy‖b ≤ ‖x‖b‖y‖b, easily proven by comparing
sums. On the other hand, in a computational context one often chooses a basis
and defines a norm with respect to that basis. J

3This formula is obtained from [Mat].
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Remark 2.42. What is the minimum length of a vector we can obtain in Lqα,β ,

only using easy, manual reductions? As each vector in Lqα,β has entries of

absolute value below q−1
2 , we have an ‘obvious’ bound

‖γ1α+γ2β‖2 =

∥∥∥∥[γ1 γ2

] [Mα

Mβ

]∥∥∥∥
2

≤
∥∥[γ1 γ2

]∥∥
2

∥∥∥∥[Mα

Mβ

]∥∥∥∥
2

≤ q
√

2n

2

∥∥∥∥[Mα

Mβ

]∥∥∥∥
2

.

Where ‖M‖2 denotes the matrix 2-norm. So, we only have to calculate the

matrix-norm of M =

[
Mα

Mβ

]
, and since

[
Mα

Mβ

]
=

[
Mα 0
0 Mβ

]
·
[
In
In

]
,

we have, by the submultiplicative property of the matrix norm,∥∥∥∥[Mα

Mβ

]∥∥∥∥
2

≤
∥∥∥∥[Mα 0

0 Mβ

]∥∥∥∥
2

·
∥∥∥∥[InIn

]∥∥∥∥
2

= 2 ·max
σ

(|σ(α)|C, |σ(β)|C),

with σ the R-algebra homomorphisms from KR → C for the extension K : Q.
Above inequality holds because the eigenvalues of Mα and Mβ respectively,
are α respectively β, embedded in the complex plane by different R-algebra
homomorphisms σ : KR → C. And clearly, the singular values of the matrix[
In
In

]
are σ = 0, 2. Since the matrix norm is equal to the square root of the

maximum complex norm of the singular values, we can conclude that the above
bound is sound.

All together, this implies that one can find – only using straightforward
reductions – a vector of the following length:

‖γ1α+ γ2β‖2 ≤ max
σ

(|σ(α)|C, |σ(β)|C) ·
√

2n · q

Therefore we have:

‖γ1α+ γ2β‖2
q

+ ‖γ1‖2 ≤
√

2n
(

max
σ

(|σ(α)|, |σ(β)|) +
q

2

)
J

Remark 2.43. In practice, for example in my ‘largest’ number field Q(ζ91) with
composite number m, the largest value observed for

log‖γ1α+γ2β
q ‖2 log‖γ1‖2

log‖α‖2 log‖β‖2

(after applying a loop of Algorithm 9) equals 0.85. Such values mostly occur
when α and β are already quite small – i.e. for large α and β, reduction is much
better. J
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CHAPTER 3

Power residue symbols and Hilbert symbols

3.1 Introduction

In this thesis, a supposedly effective algorithm computing the power residue
symbol is proposed. In the next section I define the power residue symbol and
derive some of its properties. Also, in a later section, I point out which of these
properties are utilized in specific parts of the main algorithm.

One of these properties is reciprocity, which uses the Hilbert symbol. This
symbol will be defined in this chapter too, and in the final section I will treat
Bouw’s algorithm, which computes Hilbert symbols in polynomial time.

3.2 Power residue symbols

3.2.1 Definition

Notation 3.1. In this section, K is a number field containing a primitive m-th
root of unity ζm ∈ K, and p is a prime ideal of OK , coprime to m. Also, we
denote µm = 〈ζm〉, for the group of m-th roots of unity in K.

The following definitions can be found in [Lem00, p. 111].

Definition 3.2 (Power residue symbols above prime ideals). Let K,m, p, ζm
and µm be as in Notation 3.1, and let α ∈ OK be coprime1 with p. Then we

define
(
α
p

)
m
∈ µm to be the unique m-th root of unity that satisfies(

α

p

)
m

≡ α
N(p)−1
m mod p.

Since m is coprime to p, we have that (OK/p)∗ is a cyclic group of order
N(p) − 1 that contains the subgroup µ̄m = 〈ζm mod p〉 of order m. This di-

1I.e. α /∈ p in this case.
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rectly implies that α
N(p)−1
m mod p ∈ µ̄m, making the power residue symbol well

defined.

Remark 3.3. As in fractions, we refer to the upper part and lower part of the
power residue symbol as the numerator and denominator, respectively. In the
case that p is not coprime to n or coprime to α, the symbol is undefined. In

some texts the power residue symbol is given the value
(
α
p

)
m

= 0 when α ∈ p.

Not in this thesis. J

General power residue symbols – i.e., above any ideal – are just multiplicative
continuations of Definition 3.2. Since the ring of integers of any number field
is a Dedekind ring (see Lemma 1.23), every ideal can be decomposed uniquely
in a product of prime ideals. I.e., for every (fractional) ideal b of OK , we have
(see equation (1.1) in Remark 1.28):

b =
∏
p|b

pvp(b).

Definition 3.4 (Power residue symbol). Let K be as in Notation 3.1, let b an
ideal of OK coprime to m and let α ∈ OK be an element coprime to b. We
define (α

b

)
m

:=
∏
p|b

(
α

p

)vp(b)

m

.

Remark 3.5. In this chapter, we will tacitly assume that α, the element in the
numerator of the power residue symbol, is always coprime to b, the ideal in the
denominator. J

Remark 3.6. The power residue symbol can also be defined by the Artin map
of a certain Kummer-extension [CF67, p. 73], [Koc97, Ch. 2,§1.8]. Suppose
α ∈ K with K a number field. Then K( m

√
α) : K is a so-called Kummer

extension, and the Artin map
(

·
K( m
√
α)/K

)
: ImK → Gal(K( m

√
α)/K) defines a

group homomorphism from a certain subgroup of the group of fractional ideals
(see Definition 1.25) to the Galois group of the extension K( m

√
α) : K.

Since ζm ∈ K, every element in this Galois group sends m
√
α to ζim · m

√
α,

for some i ∈ Z/mZ. The power residue symbol is then defined by the following
identity. (

b

K( m
√
α)/K

)
( m
√
α) =

(α
b

)
m
· m
√
α.

Definition 3.4 is chosen as main definition of the power residue symbol in this
thesis, because it is more down-to-earth and it fits better in the computational
context of this thesis. J

Notation 3.7 (Principal power residue symbol). If b = (β) in Definition 3.4 is

a principal ideal, we just denote the symbol
(
α

(β)

)
m

by
(
α
β

)
m

. In this thesis

this particular symbol will be called the principal power residue symbol.

Notation 3.8. In some cases there might be confusion about the ‘ground field’
of the power residue symbol. In that case we write the field as subscript:(
α
b

)
m,K

.
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Example 3.9. A hopefully instructive example for Notation 3.8. Suppose K is as
in Notation 3.1, and L : K is a finite degree Galois extension of K. If α, β ∈ K,
then also α, β ∈ L. Then(

α

β

)
m,K

=
∏

p|βOK

(
α

p

)vp(β)

m,K

;

but (
α

β

)
m,L

=
∏

P|βOL

(
α

P

)vP(β)

m,L

.

Generally, those symbols are not equal. J

Lemma 3.10. For the power residue symbol in K above a prime ideal p coprime
to m, we have the following results.

(a)
(
α
p

)
m

=
(
α′

p

)
m

if α ≡ α′ mod p, for all α, α′ ∈ OK ;

(b)
(
α
p

)
m

= 1 ⇐⇒ α ≡ ηm mod p, for some η ∈ OK .

K

ζm ∈ k

F

G

Suppose we have a tower of fields F ⊆ k ⊆ K,
with ζm ∈ k, as in the picture left. Then we
have m-th power residue symbols with respect
to ground fields K and k. If K : F is a Galois
extension, its Galois group G = Gal(K : F )
acts naturally on the power residue symbol. The
next lemma shows how.

Lemma 3.11. Let F ⊆ k ⊆ K be a tower of fields with ζm ∈ k and let K : F
be a Galois extension with Galois group G. Let b an ideal of OK coprime to m.
Then we have:

(a) (Galois action)
(
σ(α)
σ(b)

)
m

= σ
(
α
b

)
m

for every σ ∈ G and α ∈ OK ;

(b) (Inertia free) For α ∈ Ok and p a prime ideal in Ok with inertia degree

1, then:
(
α
p

)
m,k

=
(
α
P

)
m,K

, for any prime ideal P in K above p;

(c) (Norm) Suppose K : k is abelian. For p a prime ideal in Ok, and α ∈ OK
we have:

(
α
OKp

)
m,K

=
(
NK/k(α)

p

)
m,k

.

Proof. The proofs of Lemma 3.10 and Lemma 3.11 can be found in [Lem00,
p. 112-113].

3.2.2 Power residue symbols in number rings

In the case that one does not have the ring of integers, or does not even know
whether or not the ring R is equal to the ring of integers in K, it is still pos-
sible to compute the power residue symbol in the sense of Definition 3.2 and
Definition 3.4.
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Lemma 3.12. Suppose R is a number ring in K, and let p be a regular prime
ideal in R, coprime to m. Furthermore, let p′ be the prime ideal of OK such
that p′ ∩R = p, as in Lemma 1.44. Then we have for every α ∈ K∗

α
N(p)−1
m ≡ ζim mod p ⇐⇒ α

N(p′)−1
m ≡ ζim mod p′. (3.1)

Proof. Since α ∈ K∗ can be written as a fraction of two elements in R, we may
assume that α ∈ R\{0}. Remark N(p) = N(p′) = pf , since the residue class
degrees are equal by Lemma 1.46. Now, by the same Lemma 1.46, the inclusion
R ⊆ OK induces an isomorphism R/p→ OK/p′. Since the m-th roots of unity
map injectively in OK/p′, by Lemma 1.78, one must have that (3.1) holds.

Definition 3.13. Suppose α ∈ R and p is a regular prime ideal of R, coprime

to m. Then we define
(
α
p

)
m,R
∈ µm to be the unique m-th root of unity that

satisfies (
α

p

)
m,R

≡ α
N(p)−1
m mod p.

Remark 3.14. Lemma 3.12 ensures that, when p is a regular prime ideal of R, we

have
(
α
p

)
m,R

=
(
α
p′

)
m

, where p′ is the prime ideal in OK such that p′ ∩R = p.

Also note that, when R = OK , one has
(
α
p

)
m,R

=
(
α
p′

)
m

. J

Definition 3.15. Suppose α ∈ R and b is an ideal in R coprime to all singular
primes of R and coprime to m. Then we define(α

b

)
m,R

:=
∏
p|b

(
α

p

)vp(b)

m,R

.

Remark 3.16. Definition 3.15 is justified by the fact that ideals of R that are
coprime to all singular primes decompose uniquely into regular prime ideals, as
in Lemma 1.50. J

Lemma 3.17. Suppose R is a number ring and b is an ideal coprime to all
singular primes of R, and coprime to m. Then we have(α

b

)
m,R

=

(
α

OKb

)
m

. (3.2)

Proof. Suppose that p is a regular prime ideal of R, coprime to m. Then, by
Remark 1.45, we can take p′ = pOK for the prime ideal p′ in Lemma 1.44. Since,

by Lemma 3.12 and Remark 3.14, we have
(
α
p

)
m,R

=
(
α
p′

)
m

, we only have to

prove the following claim. If b =
∏

p p
np is the prime factorization of b in R, as

in Lemma 1.50, then we have the following prime ideal factorization of OKb in
OK :

bOK =
∏
p

(pOK)np (where p ranges over the prime ideals in R).

Since, by Remark 1.45, every ideal (pOK) in OK is a prime ideal, indeed, above
factorization is the prime ideal factorization of bOK in OK . This proves that
identity (3.2) is valid.
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3.3 Hilbert symbols

In this section, F is finite extension of Qp that contains a primitive m-th root of
unity. We denote by e = e(F/Qp) the ramification index and by f = f(F/Qp)
the residue class degree and by O the ring of integers of F with maximal ideal
m. Let v : F → Z be the valuation on F . Also, we denote the residue field by
F = O/m.

Definition 3.18 (m-th norm residue symbol or Hilbert symbol). The m-th
norm residue symbol is defined as follows, using the Artin map ψF : F ∗ →
Gal(F ab/F ): (x, y

m

)
m

:=
ψF (x)( m

√
y)

m
√
y

for x, y ∈ F ∗.

Notation 3.19 (Alternative notation). When F = Kp is explicitly given as a
completion of a number field K with respect to a prime p, the Hilbert symbol

is denoted
(
·,·
p

)
m

(with p replacing m).

Remark 3.20. Definition 3.18 has much in common with the definition of the
power residue symbol as in Remark 3.6, and can be seen as a ‘local’ version of
it. Since all ideals are principal in local fields, the ideal group is replaced by the
field F . J

Lemma 3.21. The Hilbert symbol of F is a map( ·, ·
m

)
m

: F ∗/(F ∗)m × F ∗/(F ∗)m → µm

that has the following properties, for every α, α′, β, β′ ∈ F ∗.

(a) (Multiplicatively bilinear)
(
αα′,β

m

)
m

=
(
α,β
m

)
m

(
α′,β
m

)
m

and
(
α,ββ′

m

)
m

=(
α,β
m

)
m

(
α,β′

m

)
m

;

(b) (Anti-symmetry)
(
α,β
m

)
m

=
(
β,α
m

)−1

m
;

(c) (Symbol properties)
(
α,−α
m

)
m

= 1 and
(
α,1−α

m

)
m

= 1 for α ∈ F ∗\{1};

(d) (Non-degenerate) If
(
α,β
m

)
m

= 1 for all β ∈ F ∗, then α ∈ (F ∗)m;

(e) (Norm residue)
(
α,β
m

)
m

= 1 ⇐⇒ α ∈ NF ( m
√
β)

F (F ( n
√
β)∗).

Writing m = pkr, with p - r and p the characteristic of the residue field2, one
often distinguishes the symbols

( ·,·
m

)
r

and
( ·,·
m

)
pk

, referring to them as the tame

Hilbert symbol and the wild Hilbert symbol, respectively, see Definition 1.77.
According to Lemma 1.78, we have r | pf − 1. The tame Hilbert symbol can be
computed using a nice and short formula.

2Note that F is an extension of the p-adic field Qp
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Lemma 3.22 (Tame Hilbert symbol). For α, β ∈ F , write a = v(α) and
b = v(β). Then one has:

(
α, β

m

)
r

= ω

(
(−1)ab

βa

αb
mod m

) pf−1
r

. (3.3)

where ω : FF → µpf−1 is the Teichmüller map as in Definition 1.76.

No similar easy-to-calculate formula is known for the wild symbols, although
there has been much research into finding one [Sha50], [Vos79], [Iwa68], [AH28].
A proof of Lemma 3.22 can be found in [Neu99, p. 336]. The algorithm of Bouw,
which we will treat shortly, calculates this wild symbol effectively [Bou16]. In
essence, Bouw’s algorithm computes a symbol isomorphic to the Hilbert symbol,
and then ‘calibrates’ it, using the following formula, obtained from [Mil13, Ch. 1,
Ex. 3.13].

Notation 3.23. Suppose α ∈ F . We define α∗ (for Lemma 3.24 only) by the
following equation:

α∗p
t = NF/Qp(α) with α∗ ∈ Zp, t ∈ Z and vp(α∗) = 0.

In words, α∗ is the p-free part of NF/Qp(α).

Lemma 3.24 (Calibration formula for the wild symbol). Let m be maximal
such that ζpm ∈ F , then we have, for each 1 ≤ n ≤ m:(

α, ζpm

m

)
pn

= ζ
α
−1
∗ −1
pn

pm

In practice, one computes the wild and tame Hilbert symbol separately, to
combine them afterwards in the following manner.

Lemma 3.25. Suppose m = pkr. Write 1 = ap · pk + ar · r, with the Euclidean
algorithm. Then we have(

α, β

m

)
m

=

(
α, β

m

)ap
r

(
α, β

m

)ar
pk
.

Proof. (
α, β

m

)ap
r

(
α, β

m

)ar
pk

=

(
ψF (α)(β

pk

m )

β
pk

m

)ap (
ψF (α)(β

r
m )

β
r
m

)ar

=

ψF (α)(β
arr+app

k

m )

β
arr+appk

m

 =
ψF (α)( m

√
β)

m
√
β

=

(
α, β

m

)
m

.

Lemma 3.26 (Product formula). Let K be a number field, containing µm, the
m-th roots of unity. Then, for every α, β ∈ K, one has∏

p

(
α, β

p

)
m

= 1. (3.4)
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Proof. See, for example, [Neu99, Thm. VI.8.1]. For the notation, see Nota-
tion 3.19.

Remark 3.27. In formula (3.4), α and β ∈ K are seen as elements inside Kp

via the inclusion K ↪→ Kp. The formula is in fact a finite product, since in the
tame case – that is, when p - m – we have the tame formula from Lemma 3.22.
This tame formula vanishes when when p - α and p - β. So, one can rephrase
Lemma 3.26 as follows. ∏

p|αβm

(
α, β

p

)
m

= 1. (3.5)

J

Remark 3.28. When one has an implementation of Bouw’s algorithm (as in
[Bou16] or section 3.5), one can use Formula (3.5) as a ‘sanity check’. This
check can be performed as follows. Choose α, β ∈ K, relatively small, and
factor them into prime ideals. Now, compute the tame symbols with the tame
formula (3.3) as in Lemma 3.22, and the wild Hilbert symbols (i.e., when p | m)
with Bouw’s algorithm, and take the following product:∏

p|αβ and p-m

(
α, β

p

)
m

·
∏
p|m

(
α, β

p

)
m

.

This should equal one for every α, β ∈ K.
Note that all Hilbert symbols in the product (3.5) must be expressed in the

same mth root of unity. To avoid problems, I took – in my own implementation
– a fixed ζm ∈ K beforehand, and expressed all Hilbert symbols as a power of
this ζm: (

α, β

p

)
m

= ζipm .

The product formula is then equivalent to:
∑

p|αβm ip ≡ 0 mod m. J

3.4 Exploitable properties of power residue sym-
bols

According to Bouw’s algorithm [Bou16], Hilbert symbols can be computed in
polynomial time. This leads to the first exploitable property of the power residue
symbol: reciprocity.

Property 3.29 (Reciprocity). For α, β ∈ K, we have:(
α

β

)
m

(
β

α

)−1

m

=
∏

p|m∞

(
α, β

p

)
m

(3.6)

Proof. A proof of the above reciprocity law can be found in [Neu99, p. VI.8.3]
or [Koc97, Ch. 2, Thm. 2.16].

Notation 3.30. In this thesis, the right hand side of (3.6) will be denoted by
U(α, β), the Umkehrfaktor (German for inversion factor).
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Remark 3.31. An immediate corollary of Bouw’s algorithm is that the Umkehrfak-
tor can be computed in polynomial time, meaning that the reciprocity law can
be used eminently in an algorithm that computes the principal power residue
symbol. The heuristic reduction Algorithm 9 in this thesis uses reciprocity
extensively. J

Property 3.32 (Translation-invariance). For α ∈ K and b an ideal of OK , we
have: (α

b

)
m

=

(
α+ β

b

)
m

for every β ∈ b. (3.7)

Example 3.33. Note that only the above two properties are used when m = 2
and K = Q. In that case,

( ·
·
)
m

is just the Jacobi symbol
( ·
·
)
, and then there

is an easy formula for U(a, b) [IR90]. This Jacobi symbol can be calculated in
polynomial time using the Euclidean algorithm in Z.

For a, b ∈ Z, the symbol
(
a
b

)
is computed by reducing a mod b, yielding an a′

with |a′| < |b|/2. After using reciprocity the computation of
(
a
b

)
comes down to

the calculation of
(
b
a′

)
. Then, reducing b mod a′, we have b′ with |b′| < |a′|/2.

Repeating these operations leads to a rapid decrease of the size of the input of
the Jacobi symbol – eventually yielding the computation of the symbol. J

Unfortunately, many number fields do not have a Euclidean algorithm3.
Also, straightforwardly reducing the numerator by the denominator and using
reciprocity is not feasible, because that depends on finding (relatively) short
vectors in the translated lattice α+b ⊆ R⊗K. This is believed to be hard4, and
variations of this problem (LWE, SIS5) are used for post-quantum cryptosystems
[MR08, §1.2].

Using LLL lattice reduction for finding short vectors solves this problem only
partially, still leaving an ‘exponential gap’ (see Remark B.3). The algorithm of
Squirrel basically consists of exploiting the above two properties, and finding
short vectors with LLL [Squ]. Squirrel overcomes the ‘exponential gap’ with
expensive precomputations ([Squ, §V.3], in the form of large tables), which are
the main cause of the fact that his algorithm does not run in polynomial time
for varying m. Also in practice these tables are, even for small number fields as
Q(ζ11), too large to compute in reasonable time, see section 4.2.

Property 3.34 (Primes). For α ∈ K, and p a prime ideal of OK (coprime to
m), we have: (

α

p

)
m

≡ α
N(p)−1
m mod p. (3.8)

The above property, together with the fact that prime numbers can be (prob-
abilistic) effectively factorized in number fields [Coh93, §4.8, §6.2], plays an im-
portant role in the reduction algorithm (Algorithm 9) of this thesis. The use

3Euclidean number fields seem to occur quite rarely, especially those with large degree –
this is suggested by the effort that has to be made to find them [Len77]. Also, Euclidean
number fields have a trivial class group. The heuristics of Lenstra-Cohen [CL84], suggest that
there are many number fields with non-trivial class group.

4Finding short vectors in some well-chosen lattices is hard [Ajt98], but [LPR10] and [SS11]
suggest that it is hard in ideal lattices too. However, these ideal lattices do not live in number
fields, and hardness is proven for LWE, which is slightly more difficult than finding relatively
short vectors.

5These are abbreviations of Learning With Errors and Short Integer Solution, respectively.
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of prime numbers gives rise to q-ary lattices, in which finding relatively short
vectors is hopefully easier than in arbitrary ideal lattices. Also, the reduction
algorithm uses so-called two-sided reduction (see subsection 4.3.2), a technique
proposed by [Len15].

The remaining properties are not used in reduction Algorithm 9, although
I really tried to find a way to exploit them in that algorithm. However, these
properties are used in the evaluation algorithm (Algorithm 10 on page 61), which
is a probabilistic algorithm. The properties are obtained from [Koc97, Th. 2.13,
p. 100], and in all claims it is assumed that the numerator and denominator do
not have a divisor in common.

Property 3.35 (Multiplicativity). For α, β ∈ K and b an ideal of OK , we
have: (

αβ

b

)
m

=
(α
b

)
m
·
(
β

b

)
m

(3.9)

Property 3.36 (Multiplicativity (2)). For α ∈ K, and b, c ideals of OK , we
have: ( α

bc

)
m

=
(α
b

)
m
·
(α
c

)
m

(3.10)

Property 3.37 (m-th residue). For α, γ ∈ K, and b an ideal of OK , we have:(
αγm

b

)
m

=
(α
b

)
m

(3.11)

The three properties above are multiplicative in essence, implying that it
requires other computational techniques than lattice reduction, which is mainly
additive. The evaluation algorithm (Algorithm 10) exploits these multiplicative
properties, in particular Property 3.37 and 3.34.

3.5 Bouw’s algorithm

3.5.1 Introduction

Let F be a finite extension of Qp, containing a m-th primitive root of unity ζm.
Then, the m-th norm residue symbol, also called the m-th Hilbert symbol, can
be defined using the Artin map ψF : F ∗ → Gal(F ab/F ):(x, y

m

)
m

:=
ψF (x)( m

√
y)

m
√
y

.

For a treatment of local class field theory and the Artin map, see [Mil13]. In
his article [Dab01], Daberkow gives an algorithm to compute this symbol. But
this algorithm does not run in polynomial time, generally [Bou16, §10.1]. Bouw
proposes an algorithm in his PhD thesis, computing the Hilbert symbols in
polynomial time [Bou16]. The following summary of Bouw’s algorithm is written
with help of a very nice outline from Michiel Kosters [Kos14].

We denote by F a finite extension of Qp, by O the ring of integers of F with
maximal ideal m. We denote the ramification index by e = e(F/Qp) and the
residue field degree by f = f(F/Qp). Let v : F → Z be the valuation on F .
Also, we write F = O/m. We choose an uniformizer π ∈ O, i.e. an element
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such that (π) = m. Also, we choose γ ∈ O such that every element in F can be

uniquely written6 as
∑f−1
i=0 ciγ

i mod m, with ci ∈ {0, . . . , p− 1}.
We will use the notation Ui = {u ∈ F | v(u − 1) ≥ i} for the higher units;

these are elements of the form 1 + c · πi, for some i ∈ N>0 and c ∈ O. Such an
element is called an i-th higher unit. Remark that there is a natural isomorphism
F ∼−→ Ui/Ui+1 for i ≥ 1, sending r̄ to 1 + rπi for r̄ ∈ F. Also the Teichmüller
map ω : F∗ → µpf−1 ⊆ F ∗ plays an important role in Bouw’s algorithm.

3.5.2 Roots of unity and the weakly distinguished unit

Coprime root of unity

Since the symbol
(
x,y
m

)
m

is expressed as a power of the primitive root of unity
ζm ∈ F , one first has to compute a primitive root ζm. We split m = d · pr,
with p - d. Since d and p are coprime, we must have that 〈ζd〉 → F = O/m
(taking modulo m) is an injective map (see Lemma 1.78). Therefore d | (pf − 1)
and thus the root ζd can easily be found by applying Newtonian Hensel-lifting
(which is possible since Φ′d(ζd) 6≡ 0 modulo m).

More difficult is the ζpr -part of the root of unity – it actually uses the same
machinery as is used for computing the symbol (x, y)m. We will return to this
later.

p-th powering map

Suppose x ∈ m, i.e., v(x) = i ≥ 1. Then, using the binomial expansion, one has

(1 + x)p − 1 = xp + pxp−1 + . . .+ px.

So, v((1 + x)p − 1) = min(p · i, e + i). Denoting d(i) = min(pi, e + i), we have
maps

mi : Ui/Ui+1 → Ud(i)/Ud(i)+1, ū 7→ up,

which are bijections when pi 6= e+ i, since p-th powering (when e+ i > pi) and
fixed multiplication (when e+ i < pi) in F are bijections. We write u0 = −πe

p .

Lemma 3.38. Write mi for the p-th powering map restricted to Ui. The fol-
lowing properties are equivalent:

(i) ζp ∈ F ;

(ii) (p− 1)|e and NF/Fp(u0) = u0

pf−1
p−1 = 1;

(iii) (p − 1)|e and kerme/(p−1) has dimension one over Fp, the field of p ele-
ments.

Remark 3.39. The lemma above is proven in the proof of [Bou16, Prop. 7.2], and
in fact gives an algorithm for checking whether ζp exists in F (by computing the
norm, property (ii)). In theoretical sense, this is not needed, because we already
assumed that F has ζm and therefore has ζpr too. In an algorithmic sense, this

6Note that finding γ and π is equivalent to computing the ramified representation as in
Lemma 1.74. In Bouw’s article, it is therefore assumed that an extension F : Qp is given in
this ramified representation. In a computational context, a ramified representation is useful
when one wants to calculate the Teichmüller lift.
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is highly useful, since an unobservant mathematician could accidentally ask for
a p-th power residue symbol inside a p-adic field where ζp does not exist!

The lemma also proves the existence of a so-called weakly distinguished unit
(WDU) δ, provided that ζp ∈ F . Note the following exact sequence:

1→ kerme/(p−1) → Ue/(p−1)

me/(p−1)−−−−−−→ Upe/(p−1)
q−→ coker(me/(p−1))→ 1

Since the dimensions over Fp of kerme/(p−1), Ue/(p−1) and Upe/(p−1) are 1,
f and f , respectively, we must have dim coker(me/(p−1)) = 1 (still provided
that ζp ∈ F , of course). So, in particular, coker(me/(p−1)) has a non-trivial
element. An element in Upe/(p−1) that maps under q to a non-trivial element,
is called a weakly distinguished unit. This special unit is important in Bouw’s
algorithm. J

Definition 3.40 (p-adic exponentiation). Suppose a =
∑∞
i=0 aip

i ∈ Zp and
u ∈ Uj , with j ≥ 1. Then we define:

ua :=
∞∏
i=0

uaip
i

.

Remark 3.41. The above definition is well-defined, since uaip
i ∈ Udi(j) ⊆ Ui+j

(here, the crude inequality di(j) ≥ i+j is used). Therefore, the partial products∏N
i=0 u

aip
i

form a Cauchy sequence with respect to the p-adic absolute value;
and such sequences converge, by the completeness of F . J

Exponential representation

One of the main components of Bouw’s algorithm is the so-called exponential
representation of principal units (which are the units of height one). This expo-
nential representation writes an element u ∈ U1 as a product of (p-adic) powers
of elements in a finite set T , which we will call the basis units. From now on,
we will assume ζp ∈ F .

Definition 3.42. We define the following sets.

(i) I := {i | 1 ≤ i < pe/(p− 1) and p - i};

(ii) Ti := {1− ω(γ)jπi | 0 ≤ j < f} ⊆ Ui, for i ∈ I;

(iii) T := {δ} t
⊔
i∈I Ti, where δ is a weakly distinguished unit. The elements

in the set T are called the basis units;

(iv) T
(j)
i := mj(Ti) = m ◦ . . . ◦m︸ ︷︷ ︸

j times

(Ti) = {tpj | t ∈ Ti} where m is the p-th

powering map.

Notation 3.43. We denote e/(p − 1) = pk · r, with p - r. Note that r ∈ I (as
in Definition 3.42).

The following lemma shows the importance of the basis units:

Lemma 3.44. With the notation of Definition 3.42 and Notation 3.43, we have:
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(i) For i 6= r and for all j ≥ 0, we have that the residues of the elements in

T
(j)
i generate the group Udj(i)/Udj(i)+1.

(ii) For all 0 ≤ j ≤ k, we have that the residues of the elements in T
(j)
r

generate the group Udj(r)/Udj(r)+1.

(iii) For j ≥ k + 1, we have that the residues of the elements in T
(j)
r ∪

{mj−(k+1)(δ)} generate the group Udj(r)/Udj(r)+1.

Proof. See [Bou16, §7.2].

Lemma 3.45. Let d(i) := min(i+e, pi), and let I = {1 ≤ i < pe/(p−1) | p - i}.
Then, for every n ∈ N>0 there exist unique m ≥ 0 and i ∈ I such that

n = dm(i),

where the superscript m means repeated evaluation.

Proof. We have that d is an injective map; suppose (the other cases are easy)
i + e = d(i) = d(i′) = pi′. Then, pi ≥ i + e = pi′ ≤ i′ + e. This implies both
i ≥ i′ and i ≤ i′, i.e. i = i′.

(Uniqueness) Suppose dm(i) = dm
′
(i′). Because d is injective, we have dm−m

′
(i)

= i′ ∈ I. If m − m′ > 0, we have that i′ is in the image of d, which is
impossible, since then either i′ is a multiple of p, or i′ ≥ pe/(p− 1). But
then i′ /∈ I, contradiction – therefore m = m′ and i = i′.

(Existence) Take an arbitrary n ∈ N>0. Take k ∈ N such that n − ke − e <
e/(p− 1) ≤ n− ke. Write t = n− ke, then dk(t) = n, since7 t ≥ e/(p− 1).
Notice that t < e/(p−1)+e = pe/(p−1); so we have two cases. One, p - t,
then t ∈ I, and we are done. Two, t = p` · b with p - b, then t = d`(b) and
b ∈ I. So in either case, there exist m ∈ N and i ∈ I such that n = dm(i).

The following is a short version of theorem [Bou16, §8.4, Th. 8.15].

Theorem 3.46. Suppose ζp ∈ F . Then the group homomorphism

φ : ZTp → U1, (at)t∈T 7→
∏
t∈T

tat (3.12)

is a surjection, with kernel equal to (bt)t∈TZp for some (bt)t∈T ∈ ZTp . This
element (bt)t∈T satisfies

ζp` ∈ F ⇐⇒ min{vp(bt) | t ∈ T} ≥ `. (3.13)

The proof of this theorem is insightful, and gives a procedure for finding the
maximum ` such that ζp` ∈ F . Therefore, I will give here a full proof of above
theorem, obtained from [Bou16, Th. 8.15] and [Kos14, Th. 2.2].

Proof. We split the proof in three parts:

7If i ≥ e/(p−1) we have pi− i = (p−1)i ≥ e, and therefore pi ≥ i+e. So, for i ≥ e/(p−1),
we have d(i) = i+ e.
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(Convergence) The product at the right side of (3.12) is finite, in the sense that
the set T is finite. So, in order to obtain convergence, one has to prove
that the expression tat is well-defined and converges, which is explained
in Remark 3.41.

(Surjective) Given u ∈ U1, the powers (at)t∈T can be built inductively.

Suppose there is already found (at)t∈T ∈ ZTp such that

v (φ((at)t∈T − u) ≥ n− 1.

Now, write n = dm(i) with m ∈ N and i ∈ I. Then, according to

Lemma 3.44, either the residues of T
(m)
i generate Un/Un+1, or (when

i = r) the residues of T
(m)
i ∪ {δj−(k+1)} generate Un/Un+1. So, assign-

ing appropriate powers of elements from T
(m)
i (and maybe δ) to (at)t∈T ,

resulting in (a′t)t∈T , yields

v (φ((a′t)t∈T − u) ≥ n. (3.14)

(Kernel) Writing e/(p − 1) = pk · r, as before, we have found that the p-th
powering map is an isomorphism Ui/Ui+1 → Ud(i)/Ud(i)+1, except in the

case where i = e/(p− 1). So, the set T
(k+1)
r has an element wp

k+1

that –
modulo Upe/(p−1) – can be expressed as a product of the other elements in

T
(k+1)
r . This means in particular that we can find an expression for wp

k+1

without the use of the element w:

wp
k+1

=
∏

t∈T\{w}

tbt

The element (bt)t∈T with bw = −pk+1 is in the kernel of the map φ,
and even generates the kernel. Now, equation (3.13) is easy to explain;
if min{vp(bt) | t ∈ T} ≥ `, then we are able to construct the following
element:

r = wp
k+1−`

·
∏

t∈T\{w}

tbt·p
−`
,

which equals one when raised to the power p`. And vice versa, if ζp` ∈
U1, it must be equal to one when raised to the power p`; therefore, the

exponential representation of ζp
`

p`
must be in the kernel of φ.

The goal of above theorem is to prove that there is a fast way to write any
element x ∈ F ∗ in the following form:

x = ω(u) · (−π)v(x) · δaδ ·
∏

t∈T\{d}

tat (3.15)

with u ∈ F∗ and at ∈ Zp and δ the distinguished unit. Because the power of
δ in this representation is so important, and is strongly related to the Hilbert
symbol, we give it a special notation:
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Notation 3.47. Suppose one can write x ∈ F ∗ as in Equation (3.15). Then we
denote by d(x, π) the power aδ of δ modulo pn, where n is maximal such that
ζpn ∈ F .

Remark 3.48. Note that d(x, π) ∈ Z/pnZ. This is due to the non-uniqueness of
the representation of x; the power of δ can vary by pn-multiples, without varying
x itself. Also, one can see that in the notation of d(x, π) also the uniformizer
π plays a role. Changing π results in changing the representation of x, and
therefore changes the symbol d(x, π). J

Corollary 3.49. The set Upe/(p−1)+ke consists entirely of pk-th powers.

Remark 3.50. In an algorithmic context, this is highly useful; if one wants to
compute the pk-th Hilbert symbol, one only has to compute with precision
pe/(p− 1) + ke. J

3.5.3 Find the Hilbert symbol from exponential represen-
tation

Notation 3.51. In this subsection, m = pn, with n maximal such that ζpn ∈ F .

Lemma 3.52. We have
(
π,x
m

)
m

=
(
π,δ
m

)d(x,π)

m
.

Proof. We have 1 =
(
ω(γ)jπi,1−ω(γ)jπi

m

)
m

, by the symbol properties of the

Hilbert symbol from Lemma 3.21. This implies

1 =

(
ω(γ)jπi, 1− ω(γ)jπi

m

)
m

=

(
ω(γ)j , 1− ω(γ)jπi

m

)
m

(
πi, 1− ω(γ)jπi

m

)
m

=

(
πi, 1− ω(γ)jπi

m

)
m

=

(
π, 1− ω(γ)jπi

m

)i
m

. (3.16)

The second equation by the multiplicative property of the Hilbert symbol, and
the third equation follows from the fact that ω(γ) is a pm-th power, since it is
a (pf − 1)-th root of unity.

Therefore, from (3.16), it follows that, when p - i(
π, 1− ω(γ)jπi

m

)
m

= 1 (3.17)

Now, writing x = ω(u) · (−π)v(x) · δaδ ·
∏
t∈T\{d} t

at , we have:

(π, x
m

)
m

=

(
π, ω(u) · (−π)v(x) · δaδ ·

∏
t∈T\{d} t

at

m

)
m

=

(
π, δ

m

)aδ
m

,

since ω(u) is a pn-th power, and
(
π,−π
m

)
m

= 1, by the symbol properties. The el-

ements of the form tat cancel, because t is of the form 1−ω(γ)jπi in combination
with equation (3.17).
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Lemma 3.53. Write x = ω(x)πiu, and set π′ = uπ. Then:

(x, y
m

)
m

=

(
π, δ

m

)d(y,π)(i−1)+cd(y,π′)

m

, (3.18)

Proof. We have(x, y
m

)
m

=

(
ω(x)πiu, y

m

)
m

=
(π, y

m

)i−1

m

(
π′, y

m

)
m

=

(
π, δ

m

)(i−1)d(y,π)

m

·
(
π′, δ

m

)d(y,π′)

m

.

So, we have to compute the c, such that
(
π′,δ
m

)
m

=
(
π,δ
m

)c
m

. We distinguish

three cases:

(i) The case m = 2. We have
(
π,δ
m

)
m

=
(
π′,δ
m

)
m

= −1. Suppose ad ab-

surdum that
(
π,δ
m

)
m

= 1. Then, because
(
π,x
m

)
m

=
(
π,δ
m

)d(x,π)

m
, we have(

π,x
m

)
m

= 1 for all x ∈ F ∗. By the non-degenerate property of the Hilbert

symbol in Lemma 3.21, we can conclude π ∈ (F ∗)2. But an uniformizer
of an extension of Q2 is never a square (since it is a prime element). Con-
tradiction. So, set c = 1 in this case.

(ii) When m 6= 2 and p - c0 = d(π, π′), calculate c1 = d(π′, π). Setting

c = −c1/c0 ∈ Z/pnZ, we have
(
π′,δ
m

)
m

=
(
π,δ
m

)c
m

, since

(
π′, δ

m

)−c0
m

=

(
π′, δ

m

)−d(π,π′)

m

=

(
π′, π

m

)−1

m

=

(
π, π′

m

)
m

=

(
π, δ

m

)d(π′,π)

m

=

(
π, δ

m

)c1
m

. (3.19)

(iii) In the harder case when m 6= 2 and p | c0 = d(π, π′), we set π′′ = −δπ′.
We have(

π′, δ

m

)
m

=

(
π′,−π′δ

m

)
m

=

(
π′, π′′

m

)
m

=

(
π′, δ

m

)d(π′′,π′)

m

,

and therefore, d(π′′, π′) = 1. Set c2 = d(π′′, π) = d(−1, π) + d(δ, π) +
d(π′, π) = d(−1, π) + 1 + c1. In the case p 6= 2, d(−1, π) = 0, and when
p = 2, one has d(−1, π) = pn−1d(ζpn , π), which is already calculated in
the exponential representation of ζpn . Since p | d(−1, π) and8 p | c1, we
have p - c2 = d(π′′, π), so that we can divide by c2.

Now define c3 = d(π′, π′′) and c4 = d(π, π′′). Then:(
π′, δ

m

)
m

=

(
π′, δ

m

)
m

(
π′,−π′

m

)
m

=

(
π′, π′′

m

)
m

8Since p | c0, we must have p | c1 too. Otherwise one can conclude from equation (3.19),
that π′ is a p-th power, which is impossible because it is a prime element.
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=

(
π′′, π′

m

)−1

m

=

(
π′′, δ

m

)−d(π′,π′′)

m

=

(
π′′, δ

m

)−c3
m

and (
π, δ

m

)c2
m

=

(
π, π′′

m

)
m

=

(
π′′, π

m

)−1

m

=

(
π′′, δ

m

)−c4
m

. (3.20)

therefore, setting9 c = c2c3/c4, we have:

(
π′, δ

m

)
m

=

(
π′′, δ

m

)−c3
m

=

((
π′′, δ

m

)−c4
m

)c3/c4
=

(
π, δ

m

)c
m

.

Remark 3.54. Note that, with the above procedure, one can write an arbitrary

Hilbert symbol as a power of
(
π,δ
m

)
m

. In order to know the exact Hilbert

symbol, one has to use the calibration formula as in Lemma 3.24. J

Lemma 3.55. We still assume m = pn. Pick an t ∈ T ∪ {π} such that t∗ 6≡ 1
modulo pn+1 (from Notation 3.23 and Lemma 3.24). And calculate – with the
exponential representation – r ∈ Z/mZ such that(

t, ζm
m

)
m

=

(
π, δ

m

)r
m

.

Taking the inverse r′ of r modulo pn, we have:(
π, δ

m

)
m

= ζ
r′· t∗−1

m
m

Proof. The existence of an element t ∈ T ∪ {π} such that t∗ 6≡ 1 modulo pn+1

follows from the calibration formula in Lemma 3.24, in combination with the
fact that ζm cannot be an p-th power. Therefore, there exists an element in

u ∈ F ∗ such that
(
u,ζm
m

)
m

is a primitive m-th root, which implies – with the

calibration formula – that u∗ 6≡ 1 modulo pn+1. Since the elements in T ∪ {π}
generate F ∗, there must exist some element t in it such that t∗ 6≡ 1 modulo
pn+1.

From the calibration formula follows the claim.

9Since c2 is not divisible by p, we must have (by equation (3.20)) that c4 is not divisible
by p too. Therefore we can divide by c4 in Z/pnZ.



CHAPTER 4

Heuristic algorithm for the power residue symbol

4.1 Introduction

In his article [Squ], Squirrel gives an algorithm that reduces the computation of
the power residue symbol

(
α
b

)
m

in arbitrary number fields to the computation
of the power residue symbol in Q(ζm), the m-th cyclotomic field. This algorithm
is a generalization of the ideas in a paper of Lenstra [Len95], in which is proven
that there is an efficient algorithm for computing quadratic residue symbols in
algebraic number fields.

Squirrel also proposes an algorithm that computes the m-th power residue
symbol, but it is only a polynomial-time algorithm if m is not allowed to vary.
Also, this algorithm is not feasible in most practical situations, because it re-
quires expensive precomputations. These precomputations include enumerating
(prime) ideals b with norm smaller than some bound that is exponential in m,
and naively calculating power residue symbols of the form

(
a
b

)
m

for such ideals,
for every residue class a mod b, see [Squ, § V.3].

In the present thesis, I exhibit an algorithm for computing
(
α
β

)
m

with α, β ∈
R, a number ring containing ζm, that does not rely on heavy precomputations,
and that has shown to be remarkably fast during experiments. Unfortunately,
I am not able to prove that it runs in polynomial time. The algorithm is able
to compute power residue symbols of the form

(
α
b

)
m

for ideals b in R, too, but
that part is not tested in this thesis.

4.2 Squirrel’s algorithm

4.2.1 General power residue symbol

The algorithm of Squirrel computes
(
α
b

)
m

, with α ∈ R and b an ideal in R. In
his approach, he reduces this symbol to computing the principal power residue
symbol, by finding a bounded ideal c of R such that (β) = bc [Squ, § V.2,
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p. 60]. With use of the LLL-algorithm, his algorithm finds β ∈ b with (β) = bc,

such that |N(β)| < ρ
n(n−1)

4 and N(c) ≤ ρ
n(n−1)

4

√
|∆(R)|
2s . Here ρ > 1 is the

LLL-constant as in Theorem 2.24, and s ∈ N is the number of pairs of complex
embeddings of the number ring R.

Remark 4.1. Note that this step results in an element β and an ideal c that
may have exponential size in log n, even if b is small. The norm of c can even
be superexponential in log n, due to the discriminant part of the bound; ∆(R)
might be around nn with n = [K : Q], where K is the number field that is the
quotient field of R. J

Using the identity
(
α
β

)
m

=
(
α
bc

)
m

=
(
α
b

)
m

(
α
c

)
m

, only
(
α
β

)
m

and
(
α
c

)
m

need to be computed, in order to find
(
α
b

)
m

. Squirrels algorithm uses (very

large) pre-calculated tables [Squ, §V.3] to obtain the value of
(
α
c

)
m

. Denoting

B =

{
c ideal of R

∣∣∣ N(c) ≤ ρ
n(n−1)

4

√
|∆(R)|
2s

}
,

Squirrel assumes that one has already computed a table of power residue symbols
for the following inputs.(α

c

)
m

for all c ∈ B and all α mod c.

These are computed by factoring the denominator and using Definition 3.4,
which makes the computation of the tables – both practically and theoretically
– unfeasible.

Remark 4.2. In this thesis, a probably more effective way is proposed to re-
duce a general power residue symbol to a principal power residue symbol, see
Algorithm 8. J

4.2.2 Principal power residue symbol

In order to compute principal power residue symbols, Squirrel uses a reduction
step. This reduction step is based on an idea of Hurwitz, adapted by Lenstra to
obtain a Euclidean-like algorithm [Len80]. Given α, β ∈ R, the reduction step
finds γ, β′ ∈ R and j ∈ Z such that

jβ = γα+ β′ with N(β′) < N(α)/2. (4.1)

This is very similar to the ordinary Euclidean condition, except for the j ∈ Z
and the reduction of the norm by a half. Squirrel obtains the result as in (4.1)
with use of LLL [Squ, § V.2, p. 61]. The main disadvantage of this method is
that the integer j is not bounded polynomially by n, the degree of the number
ring R:

|j| ≤ 4ρ
(n+1)(n−1)

4

√
|∆(R)|
2s

.

Squirrel again uses tables to overcome this problem [Squ, §V.3]. Denote the set

C =

{
j
∣∣∣ j ∈ N, 0 < j ≤ 4ρ

(n+1)(n−1)
4

√
|∆(R)|
2s

}
.
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Then, Squirrel assumes that symbols
(
α
jR

)
m

have already been computed for

all j ∈ C and all representatives α modulo jR. Since there are about jn repre-
sentatives modulo jR, this table has an approximate size of

∑
0<j≤4ρ

(n+1)(n−1)
4

√
|∆(R)|
2s

jn >

(
4ρ

(n+1)(n−1)
4

√
|∆(R)|
2s

)n
. (4.2)

For an ‘easy’ number field like Q(ζ11), taking ρ = 2 as the standard LLL-

constant, the right side of (4.2) is equal to (4 ·211·9/4 ·
√

1110/25)10 ≈ 3.5 ·10117,
which is much more than an estimation of the number of atoms in the observable
universe (≈ 1081).

Remark 4.3. The short calculation above stopped me from thinking about try-
ing to implement this part of Squirrels algorithm. It is obvious that Squirrel
invented this part only for theoretical reasons, in order to prove that there is
a polynomial time algorithm for the computation of power residue symbols, for
fixed cyclotomic order m. J

4.3 Preliminaries

4.3.1 Notation

We denote by K a number field containing ζm, and by R a number ring in K.
It is assumed that α, β are coprime elements in R and that they are coprime to
m too. That is, α, β and m do not share any (ideal) divisors. Let n = [K : Q]
be the degree of K over Q. Since R is a number ring, it has a Z-basis of integral
elements: (γ1, . . . , γn). It is assumed in the main algorithms that ζm ∈ R is
already computed and expressed in the integral Z-basis of R.

The prototype of the description above is K = Q(ζm) and R = Z[ζm] = OK
with Z-basis (1, ζm, ζ

2
m, . . . , ζ

φ(m)−1
m ).

Remark 4.4. Although I did not test it, there is no reason why the main algo-
rithm would not work for non-Galois extensions. J

4.3.2 Two-sided reduction

Two-sided reduction is a reduction technique proposed by [Len15]. It gives a
partial solution for computing the principal power residue symbol. In order to

calculate
(
α
β

)
m

, one would like to find ‘quite small’ γ1, γ2 ∈ OK such that

γ1α ≡ γ2 mod β.

The lattice Λα,β = {(γ1, γ2) | γ1α ≡ γ2 mod β} ⊆ OK × OK with standard
Euclidean metric has determinantN(β), by similar arguments as in Lemma 2.34.
Then, reduction with LLL, gives1√

‖γ1‖22 + ‖γ2‖22 ≤ ρ
n−1

4 ·N(β)
1

2n ,

1Note that γ1 and γ2 are here Z-vectors, since they are ‘written’ in a chosen integral basis
of OK .
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which is a fairly good reduction. But, one wants to relate N(β) and ‖β‖2, the
Euclidean norm of the representation of β in the integral basis of OK .

To avoid the technical machinery needed for this, I made a slight modification
of two-sided reduction, so called q-ary two-sided reduction, already introduced
in this form in Notation 2.32. This is about the following modular relation, for
a prime number q:

γ1α+ γ2β ≡ 0 mod q.

Since I believe that in the q-ary lattice Λqα,β , as in Notation 2.32, it is easier to
find small vectors, I hope that using this modification leads to shorter results
in practice. The main idea is to set q ≈ max(‖α‖2, ‖β‖2) – the main algorithm
takes q around ‖β‖2. Then, after this reduction, one proceeds recursively with

the hopefully much smaller elements γ1α+γ2β
q and γ1, in order to compute

(
α
β

)
m

.

Remark 4.5. I did not practically compare ordinary two-sided reduction to q-
ary two sided reduction extensively. However, in the construction phase of my
implementation, I found that the q-ary two-sided reduction gave – at least in
small cyclotomic fields – better reduction results than the ordinary two-sided
reduction. J

Remark 4.6. A similar ‘two-sided reduction’ technique (but not q-ary) is used
in [Gro03], to compute the tame kernel, i.e. the kernel of the map

(tv)v<∞ : K2(F )→
⊕
v<∞

k∗v ,

an important invariant in algebraic K-theory. Here F is a number field, v is a
finite valuation and kv is the residue field with respect to the valuation v. J

4.3.3 Near-prime ideals

In Algorithm 8 and Algorithm 10 the notion of B-near primeness is used. A
near prime ideal has a norm that is the product of one single large prime and
several other very small primes. More formally:

Definition 4.7 (B-near prime number). An integer N ∈ N is said to be a
B-near prime number if N factorizes as follows:

N = p ·
k∏
i=1

pi with pi ≤ B for all 1 ≤ i ≤ k.

Definition 4.8 (B-near prime ideal). An ideal a of R is called a B-near prime
ideal when the norm N(a) is a B-near prime number as in Definition 4.7.

Remark 4.9. The definition of B-near prime ideal can be considered as quite
awkward, since one might expect that the set of B-near prime ideals contains
the set of prime ideals. This is false, since prime ideals that have residue class
degree larger than one are not considered as a 1-near prime ideal; such prime
ideals do not have prime norm. The set of B-near prime ideals, however, does
contain the completely split prime ideals. J
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Remark 4.10. If B is sufficiently small, say of polynomial size in the degree
n = [K : Q], then B-near prime ideals a are effectively factorizable, since one

can find the prime factorization of the norm. Write N(a) = p ·
∏k
i=1 p

mi
i with

pi ≤ B and pi 6= pj 6= p for i 6= j.

(a) Set pp := (α, p);

(b) Factor (α, pmii ) =
∏ki
j=1 p

tj
pi,j

;

(c) Now, (α) = pp
∏k
i=1

∏ki
j=1 p

tj
pi,j

.

In the special (and often occurring) case when mi = 1 for all i, one has (α) =

pp
∏k
i=1 ppi , where ppi = (α, pi).

Step (b) can be sped up by first computing (α, pi), and then factorizing it,
which gives the factors ppi,j already. The calculation of the complete factoriza-
tion of (α, pmii ) is then much easier. J

Remark 4.11. For B of polynomial size in the degree n = [K : Q], recognizing
B-near prime ideals can clearly be done by a fast, polynomial time algorithm.
For an ideal a, calculate the norm N = N(a), then apply trial division up to B

to the number N , i.e. N = r ·
∏k
i=1 pi with pi ≤ B. Then, use a fast primality

proving algorithm to check whether r is prime or not. If r is prime, return ‘a is
a B-near prime ideal’. Otherwise return ‘a is not a B-near prime ideal’. Since
primality proving can be done in polynomial time [AKS02], this procedure gives
a polynomial time algorithm for recognizing B-near prime ideals.

Note that one might also want to use elliptic curve factorization to factor
the norm N partially, instead of trial division, for speeding up this factorization
process. I expect that this only pays off when the degree of the number field is
really large. J

4.4 Description of the main algorithm

4.4.1 Outline

The main algorithm of this thesis has essentially three parts.

(i) Principalization

Reduce the calculation of
(
α
b

)
m

to the computation of
(
α
β

)
m

and
(
α
p

)
m

for some β ∈ b and some prime ideal p. This process is called principal-
ization, and is done by Algorithm 8.

(ii) Reduction

Reduce a power residue symbol
(
α
β

)
m

, for large input α and β, to many

power residue symbols
(
αi
βi

)
m

with small αi and βi, using two-sided reduc-

tion. This part is called reduction, and is done by Algorithm 9. Despite the
fact that this part of the algorithm is not needed and is even suspected
to have superpolynomial running time, it speeds up the overall process
significantly, at least for number fields with small degree (say, below 100).
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(iii) Evaluation

Compute a power residue symbol
(
α
β

)
m

with relatively small α and β, by

finding a near-prime element in the residue class of γmα mod β for some
γ ∈ R. This is called the evaluation part of the overall algorithm, which
one can see in Algorithm 10.

Remark 4.12. The word ‘principalization’ also occurs in class field theory, where
it is used in the principal ideal theorem [CG05, p. 169]. The meaning of the
word ‘principalization’ in this thesis is not related to this theorem. J

4.4.2 Principalization

The principalization algorithm (Algorithm 8), consists of sampling ‘random’,
relatively small elements β ∈ b, and hoping that the ideal c = (β)/b is a B-near
prime ideal. Such B-near prime ideals are easily factorizable, and one calculates(
α
b

)
m

by computing
(
α
β

)
m
·
(
α
c

)−1

m
, where in the computation of

(
α
c

)
m

, the

factorization of c is used.

Remark 4.13. In line 6 of Algorithm 8, one needs a bound C on the vector
(c1, . . . , cn). According to [Coh00, Rm. (2), p. 24], C = 3 is more than sufficient
for essentially all purposes in his book. I expect that it won’t be different in
this particular algorithm. J

Remark 4.14. The idea of principalization was put forward by dr. H.W. Lenstra,
after my presentation about this thesis [Len16]. This is the main reason why
this specific aspect of the overall algorithm is not tested; I didn’t have the
opportunity. The other parts, however, are tested extensively. J

Remark 4.15. In this thesis there is no algorithm given that describes how to
inverse ideals, which is needed in line 10 of Algorithm 8. An efficient algorithm
is given in [Coh93, §4.8.4]. J

4.4.3 Reduction

The recipe of Algorithm 9 gives a heuristic algorithm for reducing the prin-
cipal power residue symbol with large-coefficient input to many instances of
the principal power residue symbol with input having small coefficients. The
crucial element in the algorithm is two-sided reduction in q-ary lattices, as in
subsection 4.3.2.

The algorithm reduces the computation of
(
α
β

)
m

to the computation of(
β
γ1

)
m

and
(
β
η

)
m

, for (hopefully) small γ1 and η. Those last two symbols are

then reduced again, and so on, inducing a tree-like structure, see Figure 4.1.
At the leaves of this tree, the function PrincipalPowResSym (Algorithm 10) is
invoked.

Remark 4.16. By Definition 3.4 and Definition 3.15, the symbol
(
α
β

)
m

is not

well-defined when β has a singular prime in its factorization, or when β and m
have a ideal divisor in common. In Algorithm 9 such instances might occur.
However, note that this does not directly lead to severe miscalculations, since
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Algorithm 8: Principalization: reducing the general power residue symbol
to the principal power residue symbol

1 PowerResidueSymbol(α, b);
Input : An element α in R and an ideal b in R
Output: The power residue symbol

(
α
b

)
m

// Formally, the input also contains an integral basis of R, ζm

represented in that basis, and m.

2 Set n := [K : Q], where K is the quotient field of R ;
3 Set B := n3 for the bound for near-primeness;
4 Compute an LLL-reduced basis (β1, . . . , βn) of b ;
5 do

// Pick a random but small element from b

6 Pick a random vector (c1, . . . , cn) ∈ Zn, with |ci| ≤ C for all i ;
7 Set β :=

∑n
i=1 ciβi;

8 Calculate N := N(β)/N(b) ;

9 while N is not a B-near prime number ;

// N is of the form p ·
∏r′

i=1 pi for ‘small’ pi now

10 Calculate the ideal c := (β)/b ;
11 Factorize c := p ·

∏r
i=1 pi, using the factorization of N as in Remark 4.10;

12 Compute
(
α
c

)
m

using above factorization ;

13 Compute
(
α
β

)
m

= PowResRed(α, β) using Algorithm 9 ;

14 Return
(
α
β

)
m

(
α
c

)−1

m
;

applying reciprocity may vanish the problem; one could simply define(
α

β

)
m

:= U(α, β)

(
β

α

)
m

,

which is a sound definition when α doesn’t have a singular prime in its factor-
ization and is coprime to m. Even when α does not satisfy these requirements,
one could still consider the fact that α and β are coprime, and replace α by
suitable translations α+ κβ, for some κ ∈ R.

The essence of this remark is that during Algorithm 9, it is not required that
all inputs of symbols are coprime to m and coprime to all singular primes, if
the numerator and the denominator are coprime at least. J

Remark 4.17. When the Galois group of the extension K : Q is cyclic, one can
choose the prime q in such a way that q remains prime, i.e., q does not factor into
smaller ideals. This might slightly increase the speed of the algorithm (because
one doesn’t have to factor q), even considering the fact that q remaining prime is
an extra condition on q. In the case when K = Q(ζpk) for p a prime number, the
Galois group Gal(K : Q) is cyclic, and q stays prime if and only if q̄ ∈ (Z/pkZ)∗

is a generator of this group [Chi07, Ch.1, Thm. 1.8]. This trick also works in
cyclotomic fields Q(ζn) when (Z/nZ)∗ is cyclic. J

Notation 4.18. In Algorithm 9 the notation � and � is used. In my imple-
mentation, I used the following:

a� b⇐⇒ a < b;
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Figure 4.1: Tree-like structure of Algorithm 9

a� b⇐⇒ a > b.

An alternative interpretation might be

a� b⇐⇒ a <
√
b;

a� b⇐⇒
√
a > b.

Notation 4.19. Algorithm 9 uses a size function s : OK → N. It is defined by
s(α) = n · ‖α‖∞, with n = [K : Q] the degree of the number field and ‖α‖∞ the
maximum-norm of α written in some beforehand chosen basis of R. One can
also use the Euclidean norm ‖α‖2.

Remark 4.20. In line 19 of the reduction Algorithm 9, a matrix N will be LLL-
reduced. The line states ‘w.r.t. the chosen metric’, which essentially means
that, beforehand, the programmer has to choose between the weighted metric
‖·‖α,β as in Definition 2.36 or the unweighted metric ‖·‖2 as in Definition 2.37.
In my implementation, I chose the unweighted metric. J

Remark 4.21. In line 3 of Algorithm 9, β is considered small if all of its coeffi-
cients are smaller than 104. This upper bound is quite practically chosen, since
Algorithm 10 is quite fast with such small input. Of course, one can freely alter
this upper bound; this might even be faster, see Remark 4.26. J

Remark 4.22. In line 23 in Algorithm 9 a quite qualitative notion ‘short rows’
is used. In my own implementation, I only use the upper three rows of the
reduced matrix; if none of those three rows work, the program exits this loop
(and jumps to line 17). J

4.4.4 Evaluation

The idea of Algorithm 10 is to repeatedly multiply α0 by the m-th power of
random γ, until γmα0 mod β has a small representative α̂ ∈ R that generates a
‘near prime ideal’. By ‘near prime ideal’ is meant an ideal that is the product
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Algorithm 9: Reduction: heuristically reducing the principal power
residue symbol

1 PowResRed(α, β);
Input : Elements α, β ∈ R.

Output: The power residue symbol
(
α
β

)
m

// Formally, the input also contains an integral basis of R, ζm

represented in that basis, m, and the size function s.

2 Calculate sα = s(α) and sβ = s(β).
3 if sβ < 104 · n then
4 Calculate PrincipalPowResSym(α, β) as in Algorithm 10, and return ;
5 end
6 if sα � sβ then
7 Calculate the Umkehrfaktor U(α, β) and ;
8 recursively call PowResRed(β, α) ;
9 Return U(α, β) · PowResRed(β, α). ;

10 end
11 if sα � sβ then
12 Calculate the basis matrix Mβ of the ideal (β) ;
13 LLL-reduce the matrix Mβ ;
14 Use Algorithm 5 and get a representative of α mod β with reasonably small

coefficients ;

15 end
// Now, α and β are about the same size.

16 do
17 Pick a (new) prime number q ≈ s(β) ;
18 Construct the 3n× 2n-matrix N with the first n rows given by (γi · α mod

q, γi · β mod q) for 0 ≤ i ≤ n− 1 and the last 2n rows given by the
diagonal matrix q · I2n ;

19 LLL-reduce the matrix N w.r.t. the chosen metric ;
20 do
21 Extract the shortest row r of N , and find the two elements δ1 and δ2

given by the first n entries, and the last n entries of this row,
respectively ;

22 Remove row r from the matrix N ;

23 while δ2 and β have a common divisor and N has still short rows;

24 while δ2 and β have a common divisor ;

25 Calculate η = δ2α−δ1β
q

∈ R ;

26 Recursively call PowResRed(δ2, β) and PowResRed(η, β). Also, calculate U(q, β)

and compute
(
β
q

)
m

by factoring the prime q ;

27 Return
(
β
q

)
m
· U(q, β) · PowResRed(η,β)

PowResRed(δ2,β)
;

of one single prime ideal having (large) prime norm with several other prime
ideals with a tiny norm, see Definition 4.8.

After finding such an element α̂ generating a near-prime ideal, that is equiv-
alent to γm0 α0 modulo β for some γ0 ∈ R, one can use reciprocity – one only

has to compute
(
β
α̂

)
m

now. But since one knows the factorization2 of α̂, one

2One can factorize (α̂) because (α̂) is a B-near prime for some B, see Remark 4.10.
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can write (α̂) = pp ·
∏k
i=1 pi and computes(

β

α̂

)
m

=

(
β

pp

)
m

·
k∏
i=1

(
β

pi

)
m

.

Remark 4.23. In line 11 of Algorithm 10, the bound B = n3 is used, with
n = [K : Q], where K is the number field of the ring R. This particular choice
is loosely based on the Extended Riemann Hypothesis (see Remark 4.35), and
may be increased to some other bound polynomial in n. Also, one might want
to set B = min(106, p(n)), so that the bound is not too small for fields of small
degree. J

Remark 4.24. In line 12 of Algorithm 10, one wants to avoid α̂ that have a
norm having a common divisor with m, because one cannot compute the power
residue symbol above a prime ideal that divides m. In the case when R is not
the full ring of integers, or when one does not know whether R is the ring of
integers, one might want to replace ‘N has divisors in common with m’ by ‘N
has divisors in common with ∆(R)’. In the case that one finds an N that has a
common divisor with ∆(R), one might use that to one’s own advantage, as in
Remark 1.51. J

Remark 4.25. The algorithm is a Las Vegas probabilistic algorithm since the
running time is a random variable [MR95, §1.2]. One can turn this algorithm
into a Monte Carlo algorithm by halting the algorithm when a specific amount
of multiplications with m-th powers of random γ is reached; the algorithm has
failed in that case. The advantage of this method is that one has a clearer view
of the running time. J

4.5 The correctness of the algorithm

4.5.1 Principalization correctness

Starting from the first line, we check the correctness of Algorithm 8, line-by-
line. Lines 1 to 4 are initializations. Lines 6-7 let us obtain a relatively small
β ∈ b. In line 8 one calculates the number N = N(β)/N(b) = N((β)/b) = N(c)
by the multiplicative property of the norm (see Lemma 1.38). Although this
multiplicative property might not be true in non-integrally closed R, it is true
for ideals that do not contain singular primes in its factorization.

Since N = N(c), one sees that lines 10-12 are consistent with line 8. Lines
13 and 14 use the multiplicative property of the power residue symbol (see
Property 3.36). Since cb = (β), we have(

α

β

)
m

=
(α
b

)
m

(α
c

)
m
,

proving line 14 to return the correct answer.

4.5.2 Reduction correctness

We check the correctness of Algorithm 9 line-by-line. Line 1 to 5 are obviously

correct. The lines 6 to 10 use reciprocity:
(
α
β

)
m

= U(α, β)
(
β
α

)
m

, and are
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Algorithm 10: Evaluation; heuristically computing the principal power
residue symbol

1 PrincipalPowResSym(α0, β);
Input : Elements α0, β ∈ R.

Output: The power residue symbol
(
α0

β

)
m

// Formally, the input also contains an integral basis of R, ζm

represented in that basis, and m.

2 Set n as the degree of the number field of R ;
3 do
4 do
5 Take a random γ̄ ∈ R/β ;
6 Set α := α0 · γ̄m modulo β, with modular exponentiation ;

7 while α is not invertible modulo β;
8 Find ᾱ, a small representative of α modulo β, as in Algorithm 6 on

page 28 ;
9 Lift ᾱ coordinate-wise to R, call it α̂ ;

10 Calculate its norm, N := N(α̂) ;

11 Factorize N =
(∏k

i=1 pi

)
· r using trial division with bound B = n3 ;

// I.e. pi ≤ B for all i, and pi are primes

12 while r is not prime or N has divisors in common with m;
// r is prime, and α̂ is invertible mod β

13 Set pr = (α, r) ;
14 Factorize the ideal (α) = pr ·

∏s
i=1 pi, using the factorization of N , as in

Remark 4.10 ;
15 Calculate the Umkehrsymbol U(α̂, β) ;

16 Return
∏s
i=1

(
β
pi

)
m
·
(
β
pr

)
m
· U(α̂, β) ;

therefore correct. Lines 11 to 14 only reduce α modulo β, and since the symbol(
α
β

)
m

is invariant under translations of α by β, this is also a correct step.

Lines 17 to 19 create a lattice in Z2n given by the matrix N . Elements ε1, ε2,
given by the first n respectively the last n entries of a row of N , always satisfy
ε1 · β − ε2 · α ≡ 0 modulo q, see also Lemma 2.34 and 2.35. Therefore, after
LLL-reduction, the elements δ1, δ2 that are formed by the shortest row, also
satisfy

δ1 · β − δ2 · α ≡ 0 (mod q). (4.3)

Lines 20 to 24 ensure us that δ2 and β do not have a divisor in common and that
the shortest rows are taken from the matrix N . By Equation (4.3), δ2 ·α− δ1 ·β
is divisible by q, making η in line 25 well-defined. Line 26 only makes recursive
calls. The correctness of line 27 is proven as follows:

(
q

β

)
m

(
η

β

)
m

=

(
qη

β

)
m

=

(
δ2α− δ1β

β

)
m

=

(
δ2α

β

)
m

=

(
δ2
β

)
m

(
α

β

)
m

.
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Now, using
(
q
β

)
m

= U(q, β)
(
β
q

)
m

, one has:

(
α

β

)
m

= U(q, β)

(
β

q

)
m

(
η

β

)
m

(
δ2
β

)−1

m

.

which verifies line 27. Note that δ2 and β do not have a factor in common, by
line 23 and 24. Therefore, there is no dividing or multiplying by zero (since,
then η is also coprime to β).

4.5.3 Evaluation correctness

Starting with the last line of Algorithm 10, line 16, we have

s∏
i=1

(
β

pi

)
m

·
(
β

pr

)
m

· U(α̂, β) =

(
β

pr ·
∏s
i=1 pi

)
m

· U(α̂, β)

=

(
β

α̂

)
m

· U(α̂, β) =

(
α̂

β

)
m

,

by reciprocity and the fact that pr ·
∏s
i=1 pi is the prime ideal factorization of

(α̂).
But, since α̂ ≡ ᾱ ≡ α ≡ γm0 α0 modulo β, for some γ0 ∈ R/β, we have(

α̂

β

)
m

=

(
γm0 α0

β

)
m

=

(
α0

β

)
m

.

by Property 3.37 (residuosity) and Property 3.32 (translation-invariance). So,
indeed, Algorithm 10 is sound.

4.6 Analysis

4.6.1 Introduction

The analysis below is far from mathematically rigorous, due to the heuristic
character of the algorithms. However, the analysis should give you a rough
indication that the overall algorithm3 will work in many cases. Also, this in-
complete analysis might give an idea how to prove rigorously that the overall
algorithm of this thesis is indeed an effective probabilistic algorithm, in which I
did not succeed.

4.6.2 Reduction analysis

In order to keep the leaves of the reduction tree in Figure 4.1 polynomially
bounded in the size of α and β, the logarithm of the size after one reduction
must be reduced by a factor c < 1. Explicitly, if the reduction of the symbol(
α
β

)
m

by Algorithm 9 yields η and δ2, one would like to have

log s(η) ≤ c ·min(log s(α), log s(β)) and log s(δ2) ≤ c ·min(log s(α), log s(β)).

3With the overall algorithm is meant the combination of Algorithm 8, Algorithm 9, and
Algorithm 10.
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The lattice Lqα,β has, with the Euclidean norm, discriminant qn, by Lemma 2.38.
The element δ2 is (often) obtained by the shortest row of the LLL-reduced matrix
of the lattice Lqα,β (see Notation 2.32, Algorithm 7 and line 18 of Algorithm 9).
Therefore, using bounds on the output of the LLL-algorithm (see Theorem 2.24),
we have

‖δ2‖2 ≤ 2
n−1

2
√
q ≈ 2

n−1
2

√
‖β‖2.

Note that q is chosen around ‖β‖2. So,

log‖δ2‖2 .
n− 1

2
log(2) +

1

2
log‖β‖2.

For (c− 1
2 ) log‖β‖2 > n−1

2 log 2, i.e. ‖β‖2 > 2
n−1
2c−1 , we can use the above bound

to prove log‖δ2‖2 . c · ‖β‖2.
So, when the coefficients of β (and α) have size larger than n = [K : Q],

this reduction ‘works’. In practice, the reduction works too when the input is
smaller.

The analysis of η = δ2α−δ1β
q is harder, since there is multiplication involved.

Assume heuristically that ‖κλ‖2 ≤ C‖κ‖2‖λ‖2 and α and β are roughly of the
same size. Since q is defined to be around ‖β‖2, we have:

‖η‖2 ≤ 2C max(‖δ1‖2, ‖δ2‖2)‖β‖2/q ≈ 2C max(‖δ1‖2, ‖δ2‖2)

≤ 2
n+1

2 C
√
q ≈ 2

n+1
2 C

√
‖β‖2.

So, if C is not too large, the conclusion will be: Heuristically, the reduction
algorithm works at least when the sizes of the coefficients of the elements are
larger than n, the degree of the extension.

Remark 4.26. Using this reasoning, it is smart to stop when sβ < n · n, in line
3 of Algorithm 9, instead of sβ < 104 ·n. The main reason why I didn’t do this,
is because I wanted to test whether it is possible to prove that this algorithm
can reduce to elements with a fixed coefficient size, within polynomial time.
According to Figure 5.1, this doesn’t seem to be true.

In future research, one can test whether the reduction algorithm seems to
terminate in polynomial time when above stopping criterion is used. J

4.6.3 Evaluation analysis

The ‘loop’ part of Algorithm 10, i.e. lines 3–12, is the most difficult part to
analyse, since it is not clear when this loop terminates. The main question is:
how often is N(α̂) of the form p ·

∏k
i=1 pi with p a large prime and pi ≤ B, i.e.,

when is N(α̂) a B-near prime number as in Definition 4.7?
Heuristically, one may assume that N(α̂) ≈ N(β) ≈ Cn, with C = maxi bi,

where bi ∈ Z are the coefficients of β written in the integral basis of the number
ring, as in Definition 1.12.

Remark 4.27. If N(α̂) is randomly distributed among the numbers around Cn,
one might hope, by the prime number theorem [MV07, Ch. 6] [Apo98, Ch. 13],
that N(α̂) has approximately probability 1

n logC to be a prime number, and
even a slightly larger probability to be a B-near prime number. So the ex-
pected number of tries in ‘the loop’ (lines 3-12) before one finds a near-prime
is approximately n logC, and maybe slightly smaller. The above suggests that
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the running time of this part of the evaluation algorithm is a random variable
having geometrical distribution with parameter p ≈ 1

logN(β) . If this is true, the

evaluation algorithm has expected polynomial running time. J

Although I didn’t succeed in proving that N(α̂) is indeed randomly dis-
tributed among the numbers around Cn, I do have some arguments why N(α̂)
might be B-near prime ‘quite frequently’. The prime ideal theorem of Landau,
[Ove15, Prop. 9.16] [Lan03] says something about the distribution of norms of
prime ideals.

Theorem 4.28. If K is a number field, then∑
N(p)≤x

1 ∼ x

log x
as x→∞, (4.4)

where p ranges over all prime ideals of OK .

Remark 4.29. We know that there are also prime ideals which have norm pf

with f > 1 and p prime, but note that such prime ideals contribute only O(
√
x)

to the left part of (4.4), in the same reasoning as in [Ove15, p. 284]; since
for such prime ideals p = (p, α) holds x ≥ N(p) ≥ p2. Therefore only about
O(n
√
x) of them might exist, with n = [K : Q]. Therefore, a vast majority of

ideals a of OK that pop up as a prime ideal have prime norm. J

In the particular context of Algorithm 10, one only samples principal ideals,
whereas the above theorem is about non-principal ideals, too. The following
result follows if one applies [Nar04, §7.2, Prop. 7.17, p. 347] to the set

A := {p prime ideal of OK | p is a principal ideal }.

This is a regular set of prime ideals (see for example [Neu99, §13, Thm. 13.2])
with Dirichlet density 1

hK
, where hK = #Cl(K) the class number of K.

Theorem 4.30. If K is a number field, then∑
p=(π)
N(p)≤x

1 ∼ x

hK log x
as x→∞, (4.5)

where p ranges over all principal prime ideals of OK .

Remark 4.31. Note that the algorithm searches for B-near (principal) prime
ideals, instead of principal prime ideals only. One expects that the class number
does not influence the density of those B-near prime ideals that much, because
also prime ideals in other ideal classes can be sampled. So, one expects some
asymptotic relation of the following form.∑

a=(α) B-near prime
N(a)≤x

1 ∼ cB,K ·
x

log x
as x→∞, (4.6)

where 1
hK
≤ cB,K and where cB,K is the Dirichlet density of the B-near principal

prime ideals. J
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Notation 4.32. Denote

ρK :=
2r1+r2πr2RK

wK
√
|∆(K)|

,

where r1 is the number of real embeddings of K, r2 is the number of pairs of
complex embeddings of K, RK is the regulator of K (see for example [Neu99,
p. 42-43]), wK is the number of roots of unity in K, and ∆(K) is the discriminant
of OK .

The following theorem counts the number of ideals in a particular ideal class
C that have norm bounded by x, and is obtained from [Ove15, §9.5, Prop. 9.17].

Theorem 4.33. For K a number field, and C an ideal class in Cl(K), we have∑
N(a)≤x
a∈C

1 ∼ ρKx

Combining equation (4.6) from Remark 4.31 and the equation of Theo-
rem 4.33 with the trivial ideal class, one might expect that the probability
that a random sampled principal ideal4 is a B-near principal prime ideal equals

P[a is a B-near prime ideal] =
cB,Kx/ log(x)

ρKx
=
cB,K
ρK

· 1

log x
. (4.7)

If one wants to prove that evaluation Algorithm 10 has expected polynomial
running time via this reasoning, one has to prove that ρK

cB,K
is polynomially

bounded in the degree n.

Remark 4.34 (Applying Brauer-Siegel). One can apply the Brauer-Siegel the-
orem [Lan94, Ch. XIII §4] to the sequence Km = Q(ζm) of cyclotomic fields
[Was12, pp. Lm. 4.18, Lm. 4.19] to obtain the asymptotic relation

log(hmRm) =
1

2
log ∆m + o(log ∆m),

where hm = hKm , Rm = RKm and ∆m = ∆(Km). Note that r1 = 0 and
r2 = φ(m)/2 in this case. This means

log ρKm =
1

2
φ(m) log(2π) + logRm − logwKm −

1

2
log ∆m =

=
1

2
φ(m) log(2π)− log hm − logwKm + o(log ∆m) as m→∞.

Using the fact [Was12, Thm. 4.20, Lm. 4.18] that log h−m = 1
4φ(m) logm +

o(φ(m) logm) and log ∆m = φ(m) logm+ o(φ(m) logm), we can conclude

log ρKm = −1

4
φ(m) logm+ o(φ(m) logm).

Here we use that the factors logwKm = logm and φ(m) log(2π) are eventually
negligible compared to φ(m) logm. Note that we use the asymptotic behaviour
of h−m here, instead of that of hm. Since hm = h+

mh
−
m ≥ h−m, this does not cause

problems. J

4Randomly sampled with norm bounded by x.
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Above heuristic reasoning suggests that for cyclotomic fields of increasing
degree, ρKm will eventually be very small. So, if the constant ρKm/cB,Km (see
equation (4.7)) is polynomially bounded in φ(m) for B = p(φ(m)), Algorithm 10
might be a expected polynomial time algorithm.

Note that Figure 5.1 suggest that, for B = n3, we have ρKm/cB,Km ∼ n2.34.
Here n = φ(m) = [Q(ζm) : Q].

Remark 4.35. According to [Bac90], assuming the Extended Riemann Hypothe-
sis, the class group is generated by ideals with norm not exceeding 12 log(∆(K))2.
Applying this in our context, it means that the class group of Q(ζm) is generated
by ideals with norm not exceeding∼ 12·φ(m)2 log(m)2. Taking B = φ(m)3 = n3

in Algorithm 10 is therefore not a bad idea.
One then hopes heuristically that ‘all classes are touched’ in the sampling of

Algorithm 10. J

4.6.4 Principalization analysis

The analysis of the principalization Algorithm 8 also heavily relies on conclusions
from results in the field of analytic number theory. The β ∈ b is obtained by
some Z-linear combination of basis elements from a LLL-reduced basis. From
Theorem 2.24, one may assume that

‖β‖2 = ‖
n∑
i=1

ciβi‖2 ≤ C
n∑
i=1

‖βi‖2 ≤ C
n∏
i=1

‖βi‖2 ≤ C · 2
n(n−1)

2 N(b). (4.8)

So, β has coefficients around C · 2
n(n−1)

2 N(b)/
√
n, therefore the norm of β is

around Cn

nn/2 · 2
n(n−1)

2 N(b)n. Here is C the constant as in Remark 4.13. So,

N(c) = N(β)/N(b) .
Cn

nn/2
· 2

n(n−1)
2 N(b)n−1.

Remark 4.36. Assuming that N(c) is a random distributed number around
N(b)n, one might expect that the principalization algorithm has probabilis-
tic running time that has the geometric distribution with parameter p ≈ 1

n·N(b) ;

if this is true, it has as a consequence that this algorithm is a polynomial ex-
pected time algorithm. However, it is not really plausible that N(c) is random
distributed. J

The following theorem counts the number of ideals that have norm bounded
by x, and is obtained from [Ove15, §9.5, Prop. 9.17].

Theorem 4.37. For K a number field, hk = #Cl(K) the class number and ρK
as in Notation 4.32, we have ∑

N(a)≤x

1 ∼ hKρKx.

where a ranges over all ideals of OK with norm not exceeding x.

The above theorem, in combination with the theorem of Landau, as in The-
orem 4.28, implies that the probability that a sampled ideal c of norm around
x is prime, equals

x/ log x

hKρKx
=

1

hKρK log x
.
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Writing δB,K for the Dirichlet density of the B-near prime ideals5, one has the
following probability that a sampled ideal c of norm around x is B-near prime.

P[a is a B-near prime ideal] =
δB,Kx/ log(x)

hKρKx
=

δB,K
hKρK

· 1

log x
. (4.9)

The difference with equation (4.7) in the analysis of the evaluation algorithm,
is that above equation (4.9) has an extra factor 1

hK
. Therefore I think this

algorithm is harder to analyse, and that it might be not a expected polynomial
time algorithm at all. I doubt that it is true that hKρK

δB,K
is polynomially bounded

in n = φ(m).
Unfortunately, I didn’t have the time to make tests and timings for Algo-

rithm 8.

4.7 Possible improvements

Remark 4.38. (Overall improvement) When K : Q is Galois, one can use the Ga-
lois action on ideals to factorize them partially: computing the greatest common
divisor Gcd(b, σ(b)) for every σ ∈ Gal(K/Q) often yields a partial factorization.
This partial factorization is quite useful, since one then obtains ideals whose
dividing prime ideals have the same splitting behaviour in K : Q, see [Neu99,
§I.9] or [Ste04, Ch. 14]. For example, an ideal b0 that is coprime to every
Galois-conjugate of itself, consists only of completely split primes. In such ide-
als, one can always obtain an integral representative of α modulo b0, i.e. α ≡ `
modulo b0, with ` ∈ Z.

Note that it might be faster to factorize ideals in this way, and apply prin-
cipalization again. However, I did not test this. J

Remark 4.39. (Improvement for reduction Algorithm 9) In line 27 of Algo-
rithm 9, one has to factorize the prime number q in the number ring R. Al-
though there are many effective probabilistic algorithms that can factorize prime
numbers in number rings, there is no deterministic polynomial time algorithm
known [GP01, §4.2].

According to [Len16], it is not needed to factorize q in order to compute(
β
q

)
m

. It is enough if we know the splitting behaviour6 q =
∏r
i=1 qi of q in OK

and the residue class degrees f(qi/q).
In the Galois case the splitting behaviour is partially known, see Lemma 1.31,

since fq = f(qi/q) is the same for all 0 ≤ i ≤ r, so rf = n. With the Artin map,
one can reveal the number f . For example, in K = Q(ζm), fq = Ord(q mod m),
the order of q̄ in (Z/mZ)∗.

When K : Q is Galois and one knows f = fq, one can thus compute

cj :=
1

f
logq N(Gcd(β

qf−1
m − ζjm, q))

for 0 ≤ j ≤ m− 1. This yields the following identity:(
β

q

)
m

= ζ
∑m−1
j=0 jcj

m .

5This is not the same constant as cB,K , since that is the density of the principal B-near
prime ideals.

6We assume that q is unramified, since, often, q is quite large. In the ramified case some-
thing very similar can be done.



68 Chapter 4. Heuristic algorithm

For the non-Galois case one might have different f(qi/q), making the situa-
tion slightly more complicated, but surely not impossible or infeasible. I didn’t
work out the non-Galois case.

Although it is not clear whether or not this improvement increases the run-
ning time of the reduction algorithm, this adaptation avoids the use of proba-
bilistic polynomial factoring algorithms over finite fields, making the reduction
algorithm fully deterministic. J

Remark 4.40. (Improvement for reduction Algorithm 9) In line 27 of Algo-
rithm 9, one computes U(q, β). At least in the case when m = ` is an odd
prime, and β ∈ Z[ζ`], one can use Eisenstein reciprocity to compute U(q, β),
instead of Bouw’s algorithm. In that case, compute an appropriate c ∈ Z/`Z
such that ζc`β ≡ 1 mod (1− ζ`)2 and ζc`β is coprime to q. Then:(

β

q

)
m

=

(
ζc`β

q

)
m

(
ζc`
q

)−1

m

=

(
q

ζc`β

)
m

(
ζc`
q

)−1

m

=

(
q

β

)
m

(
ζc`
q

)−1

m

,

see [Lem00, Thm. 11.6, Thm. 11.9]. Since we have
(
ζc`
q

)
m

= ζ
c q
`−1
`

` , we have

the following formula [Lem00, Thm. 11.9(iii)] in this case:(
q

β

)
m

= ζ
c q
`−1
`

`

(
β

q

)
m

.

J

Remark 4.41. (Improvement for evaluation Algorithm 10) If one knows that
σ(β) is coprime to β, for some Galois automorphism σ, then one deduces that the
factorization of β into prime ideals consists entirely of completely split primes
[Jan96, p. 54]. In that case, one can find for every α modulo β, some integer
k ∈ N such that α ≡ k modulo β. In that case, an adaptation of Algorithm 10
can be used, that defines N = k instead of N = N(α̂). Then, no assumptions
about the distribution of primes in the norm-set are required. However, in step
13–16, one has to factorize the prime numbers of k into prime ideals, which
might be the bottleneck in this adaptation. J

Remark 4.42. (Overall improvement) Let m =
∏r
i=1 p

ni
i be the prime factoriza-

tion of m. One can reduce the computation of the power residue symbol
(
α
b

)
m

to

the computation of the power residue symbols
(
α
b

)
p
ni
i ,Ki

where Ki = Q(ζpnii
, α).

Write m = rpk, with p - r. By the consistency property of the Artin map
[Chi07, p. 167], on has(α

b

)r
m,Q(ζm)

=

(
ρQ(ζm, m

√
α)/Q(ζm)(b)[ m

√
α]

m
√
α

)r
=
ρQ(ζm, m

√
α)/Q(ζm)(b)[ p

k√
α]

pk
√
α

=
ρQ(ζ

pk
, p
k√
α)/Q(ζ

pk
,α)

(NQ(ζm)/Q(ζ
pk
,α)(b))[ p

k√
α]

pk
√
α

=
(α
b

)
pk,Q(ζ

pk
,α)
.

According to Squirrel [Squ, Ch. 4], one can reduce the computation of such
symbols in Ki to the calculation of power residue symbols in Q(ζpnii

).

Briefly, power residue symbols in Q(ζm) can be obtained by calculating power
residue symbols in each of the subfields Q(ζpnii

), where pnii are the prime powers
occurring in m. J



CHAPTER 5

Computational Results

5.1 Introduction

In this chapter, the implementations of the reduction Algorithm 9 and the eval-
uation Algorithm 10 are tested and timed. Unfortunately, I didn’t have the time
to test the principalization Algorithm 8.

The algorithms are tested on cyclotomic fields K = Q(ζm) solely, having ring

of integers OK = Z[ζm] with Z-basis (1, ζm, ζ
2
m, . . . , ζ

φ(m)−1
m ). Every element of

K is represented with respect to this fixed basis. If an element α ∈ OK is said
to have coefficients of size 4, for example, then one means the coefficients of α
with respect to the above integral basis of Z[ζm].

5.2 Method

5.2.1 Reduction method

For this thesis, I implemented the reduction Algorithm 9 and the algorithm
of Bouw that computes the Umkehrfaktor, using the computer algebra system
Magma [BCP97]. Initially, I tried to get the running time of this algorithm as a
whole. Unfortunately, I encountered problems with completions in Magma; the
function1 Completion runs really slow when the number field has a degree above
30 and seems to be the bottleneck. Completions are required in this algorithm,
because Bouw’s computation of the Umkehrfaktor works with complete fields.
To overcome this problem, I do not calculate the Umkehrfaktors, but I only
note when the Umkehrfaktor is called.

When the reduced symbols in the reduction algorithm are small enough, the
evaluation algorithm is called – see line 3 to 5 of Algorithm 9. Instead of actually
calculating these, I only kept track of the number of calls to the evaluation

1http://magma.maths.usyd.edu.au/magma/handbook/text/352#3310

http://magma.maths.usyd.edu.au/magma/handbook/text/352#3310
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algorithm that computes the small power residue symbols. To clarify this all, I
will give an example.

Example 5.1. In the timings, I have calculated the power residue symbol of
α, β ∈ Q(ζ15) where α and β have entries of about 20 digits in the Z-basis
(1, ζ15, . . . , ζ

7
15). So, for example, α is of the form:

α = 38294810592849103948 + 28501937593840392810ζ + . . .

+9105849301758463928ζ7.

In a real computation, one of course computes all Umkehrfaktors and small
power residue symbols. In my timings, however, I omitted these and I only
count how many times those functions are called. So, after such a timing, the
result might be: “The computation of the power residue symbol of alpha and
beta needed 45 calls of the Umkehrfaktor and needed 129 ‘small’ calls of the
evaluation algorithm. The running time was 0.24s”. J

So there are three variables in each running-time measurement: the number
of Umkehrfaktor calls, the number of ‘small’ power residue symbol calls, and the
running time in seconds. To give an indication of the relation of these variables
with the input size, I made two log-log plots, which can be seen in Figure 5.2 and
Figure 5.3. The first of these two has on the y-axis the number of Umkehrfaktor
calls and ‘small’ calls, whereas the second has the running time on the y-axis.
Both have the input size on the x-axis, of course.

Remark 5.2. The implemented algorithm uses the ‘unweighted’ norm as in Def-
inition 2.37. I have not yet implemented a version with the weighted norm (as
in Definition 2.36); so there might be an improvement if that norm is used. J

5.2.2 Evaluation method

I also have implemented the evaluation Algorithm 10. I made several timings in
cyclotomic fields Q(ζm) with various m and with elements that have coefficient
sizes 4, 8 and 16. The results can be found in Table A.3 in the appendix and in
the chart (Figure 5.1).

Remark 5.3. In these timings, I omitted the time that was needed to calculate
the Umkehrsymbol, which is only called one single time per calculation. I did not
calculate these Umkehrsymbols at all, because of the problems I encountered
with the Completion function of Magma. Also, I have separated the time
needed for lines 3-12 (the ‘loop’), and the time needed for lines 13-16. This
because of the possible unpredictable behaviour of the loop, since I do not know
whether this loop indeed terminates within reasonable time, see the analysis of
the evaluation algorithm (subsection 4.6.3). J

5.3 Results

The results of the timings of the evaluation algorithm can be seen in Table A.3
in the appendix and in the chart in Figure 5.1 of this section. For the reduction
algorithm, the results are stated in Table A.2 and the charts in Figure 5.2 and
Figure 5.3. Although there is a short explanation below each chart, Table A.1 in
the appendix elaborates on the meaning of the variables occurring in the tables
and charts in more detail.
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Figure 5.1: A log-log plot of the evaluation algorithm, with on the x-axis the
size of the input. The red circles describe the running time for the loop (i.e.
line 3-12) of Algorithm 10, and the green circles describe the time needed for
lines 13-16 in Algorithm 10. The size of the circles is proportional to the degree
of the extension [K : Q] = φ(m).

5.4 Conclusion

5.4.1 Evaluation

Figure 5.1 suggests that evaluation Algorithm 10 might be a probabilistic algo-
rithm with expected polynomial time.

Remark 5.4. Remark that lines 13-16 (green circles) require much more time
than line 3-12 (the loop, red circles). This is a consequence of calculating the
ideal pp = (α, p); computing the greatest common divisor of two ideals is done
by applying the Hermite normal form, which runs in O(kn4 log2(M)) time for
n×k matrices with coefficients bounded by M [MW01], see also subsection 2.3.3.
However, in this specific case, p ≈ N(α) ≈ Cn, where C = ‖α‖∞, the absolute
value of the maximum coefficient of α with respect to the chosen integral basis

(1, ζ, . . . , ζ
φ(m)−1
m ) of Z[ζm]. Therefore, M ≈ Cn, which means that one expects

that computing the ideal pp = (α, p) might require O(n7 log(C)) time (by setting
n = 2k). The timings give a slightly better order (≈ 4.4), which might be
explained by fast multiplication methods.

So, the probabilistic part (lines 3-12) does not seem to be the bottleneck of
the evaluation algorithm, which surprises me positively. J

Remark 5.5. In the tests of the evaluation Algorithm 10, the class numbers of
the fields Q(ζm) that were tested vary heavily. For example (see Table A.3) the
field Q(ζ73) has class number around 12 · 106 [OEIS]. One might conclude that
the size of the class group doesn’t have any influence on the running time of the
algorithm.
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symbols with ‘small input’ (the evaluation algorithm). The size of the circles is
proportional to the degree of the extension [K : Q] = φ(m).
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J

5.4.2 Reduction

As the charts in Figure 5.2 and 5.3 suggest, the reduction Algorithm 9 is prob-
ably, in the present form, not a polynomial-time algorithm. Although the algo-
rithm seems to have order one in the coefficient size, there is no indication that
its running time is polynomial in the degree, which one can see by examining
the sizes of the circles in Figure 5.2 and 5.3.

Remark 5.6. The running time of the reduction algorithm seems to depend
only linearly on the coefficient size. As the evaluation Algorithm 10 has order
≈ 4.4 in the coefficient size, it is likely that it is more effective to run a suitable
combination of the reduction and the evaluation algorithm, at least when the
coefficient sizes are fairly large. J

Remark 5.7. In Figure 5.2 and 5.3 one can see four ‘trails’ of circles. They are
formed by the different coefficient sizes; 40, 60 and 80 and 160 digits. J

Remark 5.8. The observation that increasing the degree influences the running
time much more than increasing the coefficient size might partially be caused
by the LLL-algorithm, whose running time is order 6 in the degree, but only
order 3 in the entry size [NV10, p. 150, Thm. 3], see subsection 2.4.2. J

Remark 5.9. The number of Umkehrfaktor calls is consistently approximately
three times as big as the number of small calls. This is not a coincidence. The
recursive steps of the heuristic Algorithm 9 form a binary tree, as in Figure 5.4.
In every ramification of this binary tree, the Umkehr symbol is called three

times: to reverse
(
p
β

)
m

,
(
δ1
β

)
m

and
(
η
β

)
m

, see Algorithm 9, line 27. At the

end of the branches (the leaves), there is one single call for a small power
residue symbol computation (the evaluation algorithm). Since the number of
ramifications is almost equal to the number of leaves in a binary tree, it is
evident that there are three times as many Umkehrcalls as small calls. J

Figure 5.4: A binary tree

Remark 5.10. Remark that the Umkehrcalls in Figure 5.2 are counted as if they
are all equally hard to compute. They are not; in the beginning of a compu-
tation the Umkehrcalls will have larger input, implying a harder computation.
At the end of the computation of a power residue symbol, the input of the
Umkehrcalls will be small. Those computations are not as hard, of course. For
sake of simplicity and conciseness, I have made no distinction between those
Umkehrcalls. J



74 Chapter 5. Computational Results

5.5 Discussion

Remark 5.11. In the starting phase of my research about the power residue
symbol, I attempted to compute the power residue symbol deterministically, by
applying the reduction algorithm (Algorithm 9) only. The main idea was to
reduce a power residue symbol with large input to many power residue symbols
with small input. Power residue symbols with small input – so was my thought
– can then be factored easily. I considered an element to be small when the
absolute values of its coefficients are all bounded by some constant C. However,
for varying degree n, elements α ∈ R with coefficients around C have norm
N(α) ≈ Cn, a number with approximately log10(C) · n digits. There is no
known algorithm that factors numbers of this size, within polynomial time (in
the size of the input).

So reduction alone is not enough; that is why I also made a probabilistic
‘evaluation algorithm’ (Algorithm 10), which turned out to perform much better
than the reduction algorithm. J

Remark 5.12. As already pointed out in the analysis of the reduction algorithm
in subsection 4.6.2, it was also possible to let the reduction algorithm terminate
earlier, when the reduced elements are of size n. This might be an adaptation
that makes the reduction part polynomial time. J

Remark 5.13. It seems to be a good idea to run a combination of the reduction-
and the evaluation algorithms, as already pointed out in the conclusion. Where
exactly one has to switch from the reduction algorithm to the evaluation al-
gorithm is not investigated in this thesis and is an interesting problem on its
own. J

Remark 5.14. The results in Figure 5.1, 5.2 and 5.3 might not be fully reliable,
because of the following reasons:

• The heuristic algorithm is tested only for some cyclotomic fields. In an
algorithmic sense, those fields are really nice, for example, because they
have a known ring of integers.

• The heuristic algorithm is tested for ring of integers only, not for general
number rings. The reason for this is that the ‘escapes’ when one encounters
singular primes are not implemented yet – also, expanding a number ring
is quite a technical job.

• The heuristic algorithm is tested only for ‘quite small’ fields, with degree
below 100. For degrees above 100 the computation of one single power
residue symbol can last for several weeks.

Further research can be done in non-cyclotomic and even non-Galois number
fields; one has to include expanding of number rings in those cases. J

Remark 5.15. I did not test the differences between two-sided reduction, q-ary
two-sided reduction with the unweighted norm, and q-ary two-sided reduction
with the weighted norm thoroughly. It is possible that one of these three gives
better results in larger fields. J
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Data

Variable Explanation
m Indicates that the computation takes place in the

cyclotomic field Q(ζm)
n The degree [Q(ζm) : Q] = φ(m) of the field
coef. size The coefficient size of α and β, written in the fixed

chosen basis of Z[ζm] (see the introduction)
inp. size The input size, calculated by multiplying the input

size and the degree
Evaluation
algorithm
loop (s) The running time of the loop part (line 3-12) of the

evaluation Algorithm 10, in seconds
calc. time (s) The running time of the ‘calculation’ part (line 13-

16) of the evaluation algorithm, in seconds
total time (s) The total running time of the evaluation algorithm,

in seconds
Reduction
algorithm
Umkehr calls The number of calls to the Umkehrfaktor algorithm
‘small’ calls The number of calls to the evaluation Algorithm 10,

to compute small power residue symbols
time (s) The running time of the reduction algorithm (ex-

cluded the Umkehrfaktor, and evaluation, as de-
scribed in the method), in seconds

Table A.1: Explanation of the variables of Table A.2 and A.3
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m n coef. size inp. size Umkehr calls ‘small’ calls time (s)

15 8 20 160 29 8 0.29
15 8 40 320 61 16 0.71
15 8 80 640 125 32 1.83
15 8 160 1 280 253 64 15.2

45 24 20 480 29 8 3.89
45 24 40 960 61 16 13.8
45 24 80 1 920 125 32 39.63
45 24 160 3 840 253 64 136.08

35 24 20 480 29 8 4.2
35 24 40 960 61 16 12.97
35 24 80 1 920 125 32 44.28
35 24 160 3 840 253 64 118.73

63 36 20 720 45 12 29.8
63 36 40 1 440 93 24 93.93
63 36 80 2 880 189 48 274.28
63 36 160 5 760 389 98 812.27

99 60 20 1 200 297 75 2 246.17
99 60 40 2 400 801 201 6 191.22
99 60 80 4 800 1 589 398 16 535.12
99 60 160 9 600 3 553 889 44 812.02

105 48 20 960 85 22 151.24
105 48 40 1 920 185 47 455.03
105 48 80 3 840 381 96 1 220.06
105 48 160 7 680 777 195 3 721.93

9 6 20 120 29 8 0.29
9 6 40 240 61 16 0.45
9 6 80 480 125 32 2.31
9 6 160 960 253 64 7.9

25 20 20 400 29 8 1.52
25 20 40 800 61 16 5.46
25 20 80 1 600 125 32 15.57
25 20 160 3 200 253 64 52.45

49 42 20 840 57 15 63.98
49 42 40 1 680 113 29 214.52
49 42 80 3 360 253 64 622.94
49 42 160 6 720 505 127 1 565.5

27 18 20 360 29 8 1.09
27 18 40 720 61 16 3.3
27 18 80 1 440 125 32 11.6
27 18 160 2 880 253 64 35.16

81 54 20 1 080 97 25 242.89
81 54 40 2 160 209 53 988.68
81 54 80 4 320 449 113 2 080.81
81 54 160 8 640 905 227 6 149.33

Table A.2: Data of the charts in Figure 5.2 and 5.3, of the reduction algorithm
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m n coef. size inp. size loop (s) calc. time (s) total time (s)

15 8 4 32 0 0.01 0.01
15 8 8 64 0.05 0 0.05
15 8 16 128 0.16 0 0.16

45 24 4 96 0.2 0.2 0.4
45 24 8 192 1.23 1.39 2.62
45 24 16 384 0.67 62.75 63.42

35 24 4 96 0.07 0.14 0.21
35 24 8 192 0.48 1.46 1.94
35 24 16 384 0.92 81.58 82.51

63 36 4 144 0.04 0.83 0.87
63 36 8 288 0.52 18.19 18.71
63 36 16 576 5.49 242.14 247.64

99 60 4 240 0.72 29 29.73
99 60 8 480 5.22 158.58 163.81
99 60 16 960 4.33 4 301.64 4 306

105 48 4 192 0.61 3.24 3.86
105 48 8 384 2.28 119.95 122.25
105 48 16 768 6.47 3 054.8 3 061.31

330 80 4 320 2.39 84.52 86.92
330 80 8 640 6.92 855.43 862.38
330 80 16 1 280 366.13 18 194.55 18 560.77

9 6 4 24 0.01 0 0.01
9 6 8 48 0.04 0 0.04
9 6 16 96 0.08 0 0.08

25 20 4 80 0.14 0 0.15
25 20 8 160 0.08 0 0.08
25 20 16 320 1.26 0 1.26

49 42 4 168 0.26 1.47 1.74
49 42 8 336 3.16 51.8 54.96
49 42 16 672 1.02 1 028.9 1 029.95

27 18 4 72 0.01 0.01 0.02
27 18 8 144 0.08 0.01 0.09
27 18 16 288 0.72 0 0.72

73 72 4 288 1.19 31.77 32.98
73 72 8 576 6.93 466.76 473.7
73 72 16 1 152 132.47 8 436.16 8 568.69

81 54 4 216 1.66 15.59 17.26
81 54 8 432 27.06 124.64 151.71
81 54 16 864 11.46 1 489.5 1 500.99

83 82 4 328 11.35 60.72 72.08
83 82 8 656 4.13 1 229.7 1 233.85

125 100 4 400 9.57 129.93 139.53

125 100 8 800 41.09 3 748.06 3 789.19
390 96 4 384 45.42 143.73 189.18
390 96 8 768 2.53 3 179.45 3 182.02

Table A.3: Data of charts in Figure 5.1, of the evaluation algorithm. Loop time
refers to lines 3-12 of Algorithm 10, whereas calc. time refers to lines 13-16.
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APPENDIX B

Notes

B.1 Introduction

This chapter contains two main subjects. The first subject is the QSDL-
conjecture, which I invented to prove that the reduction Algorithm 9 also works
well when the input vectors are small. I did not succeed in completing such a
proof, and I could not give many plausible arguments why the QSDL-conjecture
should be true, and there is even some mathematical evidence that it could be
false. Nonetheless I include a section (section B.2) about the QSDL-conjecture,
partially because my supervisor advised me to, partially because I think it might
perhaps be useful in the future.

The second subject is about finding an algorithm for the power residue sym-
bol, and mainly about how not to compute it. Because my research about the
power residue symbol lasted about a year, I tried many other (wrong) ways to
compute the power residue symbol. In order to help future researchers not to
make the same mistakes as I did, I included a section about algorithms that
don’t work, with arguments why they do not work. This is section B.3.

B.2 The QSDL-conjecture

Conjecture B.1 (q-ary square-dense lattice). There exists a fixed ε > 0 such
that there is an algorithm that accepts as input n-dimensional square-dense q-
ary ideal lattices L with standard Euclidean norm, and returns in polynomial
time a vector in ` ∈ L with:

‖`‖2 ≤ ∆(L)
2−ε
n = q1− ε2 (B.1)

where ‖·‖2 is the Euclidean length with respect to the chosen basis on L, see
Notation 2.4.

As a conjecture should be plausible, I want to give some argumentation why
I expect the above conjecture – in the following text abbreviated to QSDL – to
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be true. The first argument will cite Minkowski’s second theorem, which makes
a statement about how short vectors can be in lattices. The second argument
shows that, without any effort, one is able to find vectors only really near de
bound in (B.1). The third argument uses LLL to show that for fixed n, the
QSDL-conjecture is true for all but finitely cases. For varying n, this is not the
case. The last argument is about the fact that one can see a q-ary lattice as
a Fq-vector space, and that this might imply that ‘reducing’ in such lattices is
somewhat less hard.

Minkowski’s theorem

As a consequence of Minkowski’s convex body theorem [MG02, p. 12], we have
the following result:

Theorem B.2. Let L be an n-dimensional lattice. Then there exists an element
` ∈ L that satisfies:

‖`‖2 ≤
√
n ·∆(L)1/n

Applying the convex body theorem to the QSDL-conjecture, we obtain that
in the q-ary lattice L there exists an element `, such that |`|∞ ≤

√
n ·∆(L)

1
n .

It is good to know that there are short vectors in L, but it is well-known that
there is no efficient algorithm that find such short vectors (near the Minkowski
bound) in general lattices [EB81], [Ajt98].

Vectors near the QSDL-bound

The lattice in the QSDL conjecture is a q-ary and square-dense ideal lat-
tice, which allows us to find not too large vectors: since Lq = qZn ⊆ L,
one can easily reduce every entry modulo q and take a representative inside
{− q−1

2 , . . . , 0, . . . , q−1
2 }. This gives us a set B (not necessarily a basis) of n

elements in L such that every element bi satisfies:

‖bi‖2 ≤
√
n ·∆(Lq)

1/n =
√
n ·∆(L)2/n

So, without any effort, one is able to find multiple vectors that are only slightly
bigger than the bound in equation (B.1) of Conjecture B.1.

LLL finds short vectors

Note that applying LLL to a given q-ary square dense lattice L, we have, for
the uppermost basis vector b1, found by LLL (see Theorem 2.24)

‖b1‖2 ≤ ρ
n−1

4 ·∆(L)
1
n

So, when ρ
n−1

4 · ∆(L)
1
n ≤ ∆(L)

2−ε
n , one has found a vector in λ, satisfying

equation (B.1). This is precisely the case when ρ
n(n−1)

4 ≤ ∆(L)1−ε.

Therefore, for fixed n, only lattices L with a discriminant less than ρ
n(n−1)

4 · 1
1−ε

might violate the QSDL-bound (B.1).

Remark B.3. This particular phenomenon, where LLL-reduction finds relatively
short vectors in superexponential instances of L, but where for subexponential
L finding short vectors might fail, is called the exponential gap of LLL. This
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exponential gap is the main cause why I cannot prove that the main algorithm
runs in polynomial time, for varying field degree n. Also Squirrel [Squ, §V.2,
§V.3] struggles with this exponential gap problem, and tries to solve it with
precomputations that consists of calculating very large tables of precomputed
power residue symbols, with input sizes that are exponential in the field degree
n. J

q-ary lattices as Fq-vector spaces

We can ‘embed’ the quotient L/Lq of a q-ary lattice L as a subgroup of Zn/qZn,
which can be seen as a Fq-vector space; so L/Lq is then a subspace of Fnq . Most
lattice-reduction algorithms like LLL, BKZ, Primal Dual reduction and Random
Sampling reduction do not have a special subprotocol for ‘finite field lattices’
[NV10, Ch. 4]. Despite the fact that one cannot assume that such lattices
are more simple, there is no algorithm yet that attacks the specific problem of
reducing in lattices ‘over finite fields’.

Remark B.4. In an article of Micciancio and Peikert [MP13], a stronger version
of QSDL is proven to be hard – in the sense that one can reduce other presum-
ably hard (worst-case) lattice problems to it. However, the lattices in this paper
are q-ary, but are not ideal lattices, and also not square-dense. From [Mic16], I
know that the problem of finding vectors in these specific ideal lattices satisfy-
ing (B.1) in Conjecture B.1 is still an open problem. However, it was suggested
[Mic16] that, in theory, the chances that Conjecture B.1 is true, are pretty slim.
However, in practice – since lattice algorithms work quite well – an algorithm
based on the QSDL-conjecture might work [Mic16]. J

Corollary B.5. Assuming the QSDL-conjecture, then one can effectively find
– given α, β ∈ R coprime, and q prime – γ1, γ2 ∈ R such that:

‖γ1α+ γ2β‖2
q

+ ‖γ1‖2 <
√

2n

qε

(
max
σ∈G

(|σ(α)|, |σ(β)|) +
q

2

)
Assuming the QSDL-conjecture, one can find elements in the 2n-dimensional

lattice Lqα,β with (Euclidean) length bounded by q1−ε, see (B.1). Applying this
bound in the reasoning of Remark 2.42, one obtains above result.

B.3 Other attempts to compute the power residue
symbol

In this section, some other methods I considered to compute the power residue
symbols are described. These methods were all not feasible, and I will try to
explain why.

• (Factorization is hard) Since Property 3.35, 3.36 and 3.37 are multi-
plicative, they seem to require some kind of factorization, which is believed
to be hard in the rational integers 1 in its non-modular form.

1The presumed hardness of factoring is widely used in cryptographic protocols like RSA
[RSA78], and no effective polynomial time non-quantum algorithms are known [CP05]. The
best known heuristic estimation for the asymptotic running time of factoring the number n is
Ln[ 1

3
, 3
√

64/9], according to [Pom96] and [LL93], using the number field sieve.
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Moreover, for Property 3.36, one would like factoring of ideals in the de-
nominator, and for Property 3.35 factoring of elements in the numerator.
Factoring of ideals is at least as hard as factoring in Z, since a factorization
of an ideal gives a factorization of its norm in prime powers .

Factoring an element α of a number ring as a product of more elements
seems to be harder than factoring in Z, since the straightforward way to
compute such a factorization is by computing the ideal factorization of (α)
into prime ideals first, and then using the class group to generate principal
ideals that divide α . Note that after finding those principal ideals, one
still needs to find small generators of these ideals, which is believed to be
difficult problem too [Cra+15].

• (Smooth numbers are rare) One should remark that the factoriza-
tions needed for Property 3.35, 3.36 and 3.37 are modular, in the sense
that they are modulo the denominator b. So, in this particular context
it is enough, given α ∈ K and b an ideal of OK , to find ‘quite small’
δ1, . . . , δs, η1, . . . , ηt ∈ K but arbitrary γ1, γ2 ∈ K such that

γm1 δ1 · · · δsα ≡ γm2 η1 · · · ηt mod b. (B.2)

The computation of
(
α
b

)
m

, using equation (B.2), is then as follows2.

(α
b

)
m

=

∏t
i=1

(
ηi
b

)
m∏s

i=1

(
δi
b

)
m

. (B.3)

This ‘modular factorization’ (B.2) appears to me as being somewhat eas-
ier than a non-modular factorization. However, note that similar modular
equations as in (B.2) are searched for in the so-called index calculus al-
gorithm [Adl79], which computes discrete logarithms in the multiplicative
group of the integers modulo a prime p. In the index calculus algorithm,
one searches for so-called B-smooth representatives of numbers (mod p);
in order to find enough such representatives to compute the discrete log-
arithm, B must be quite big [Pom94, §2].

I expect it to be not much different in our number field analogy, equation
(B.2), in spite of the fact that we only need óne such modular equation
(instead of many, as in the index calculus algorithm). Also, note that
testing for smoothness in Z can be done by trial division or elliptic curve
factorization [Len87]. In a number ring, element factorization is needed,
which is only feasible (by part (i)) when really smooth3 representatives
(i.e. B must be small) can be found, hopefully yielding factorization in
small elements. Because of this relation with the index calculus algorithm,
I do not expect to find modular equations like (B.2) easily.

2

s∏
i=1

(
δi

b

)
m

·
(α
b

)
m

=

(
δ1 · · · δsα

b

)
m

=

(
γm1 δ1 · · · δsα

b

)
m

=

(
γm2 η1 · · · ηt

b

)
m

=
(η1 · · · ηt

b

)
m

=
t∏
i=1

(ηi
b

)
m

3I.e., smooth norm.
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As an additional argument, I expect finding a smooth algebraic integer
in the subset α + b ⊆ OK to be hard, because the analogous problem
in Z, finding smooth numbers in arithmetic progressions, does not give
really much hope. According to [BP92], smooth numbers in arithmetic
progressions are very rare.

Remark B.6. Note that, when b = (β) in equation (B.2), one can use reciprocity
in (B.3), and repeat the procedure. If modular equations as in (B.2) were easy
to find, the principal power residue symbol could be computed effectively. J

Remark B.7. Note that the power residue symbol has a link with m-th residu-
osity, which is being able to decise whether α is an m-th power modulo b or not.
If residuosity can be computed effectively, the principal power residue can too,
since one can test γα mod β for residuosity, for varying, very small γ. After
a few tries, one finds a γ0 such that γ0α is an m-th power modulo β. Then,

one computes
(
α
β

)
m

by calculating
(
γ0

β

)−1

m
. This can be done by applying reci-

procity, using the fact that γ0 is very small, and thus easily factorizable. Higher
residuosity is believed to be hard [AM82], and there are cryptosystems based
on it [ZMI88]. J
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APPENDIX C

Explanation of the picture on the front cover

The picture on the front page (and the cover) is generated by a program made by
David Moore [Moo16], based on earlier work by Stephen J. Brooks. The picture
visualizes the algebraic numbers in the complex plane, where the size of the
circles decreases exponentially with the ‘complexity’ of the algebraic number.
The complexity of an algebraic number α is defined as the sum of the absolute
values of the coefficients of fα(x), the minimum polynomial of α over Z.

The colouring of the circle associated to α corresponds with the degree of
the minimum polynomial of α.
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